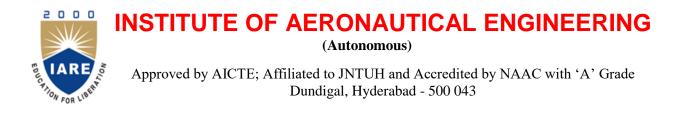

COURSE DESCRIPTOR BOOKLET

B.Tech

AERONAUTICAL ENGINEERING


(Accredited by NBA)

R-16 REGULATIONS

BLOOM'S TAXONOMY OF LEARNING OUTCOMES

.....Moving Towards Perfection in Engineering

I SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGL	ENGLISH FOR COMMUNICATION								
Course Code	AHS00	AHS001								
Programme	B.Tech	B.Tech								
	Ι	AE	ME CE							
Semester	II	CSI	E IT ECE E	EE						
Course Type	Founda	Foundation								
Regulation	IARE -	IARE - R16								
			Theory	Practical						
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits				
	3		-	3	2	1				
Chief Coordinator	Ms B A	Ananc	l Lakshmi, Asso	ciate Professor		•				
Course Faculty	Ms P B Ms Jay Ms Shi Mr. Su	B Esth shree risha dhaka	Raju, Associate F her Rani, Assistar Naidu, Assistan Deshpande, Assi ar Medi, Assistan Assistant Profes	tt Professor t Professor stant Professor t Professor						

I. COURSE OVERVIEW:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, this Engineering English has been designed to develop linguistic and communicative competence of the students. In the classroom the focus should be on the skills of reading, writing, listening and speaking. The teacher can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/ essays etc.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Standard applicability of grammar and vocabulary

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
English for Communication	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	×	Assignments	×	MOOCs		
V	LCD / PPT	✓ Seminars		×	Mini Project	~	Videos		
×	Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 9	Individual and team work: Function effectively as an	3	Term paper
	individual, and as a member or leader in diverse teams, and in		
	multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex	3	Seminar Listening
	engineering activities with the engineering community and		Test Speaking Test
	with society at large, such as, being able to comprehend and		Presentation
	write effective reports and design documentation, make		(Technical /
	effective presentations, and give and receive clear		Review:
	instructions.		Movie/Book)
PO 11	Project management and finance: Demonstrate knowledge	2	Five minutes video
	and understanding of the engineering and management		
	principles and apply these to one's own work, as a member		
	and leader in a team, to manage projects and in		
	multidisciplinary environments.		
_	2 _ Hight 2 _ Modiume 1 _ Low	•	

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	-	-
	aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new		
	products		
PSO 2	Problem-solving Skills : Imparted through simulation language	-	-
	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles		
PSO 3	Practical implementation and testing skills: Providing	2	Seminar
	different types of in house and training and industry practice to		
	fabricate and test and develop the products with more		
	innovative technologies		
PSO 4	Successful Career And Entrepreneurship: To Prepare The	-	-
	Students With Broad Aerospace Knowledge To Design And		
	Develop Systems And Subsystems Of Aerospace And Allied		
	Systems And Become Technocrats		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course s	The course should enable the students to:								
Ι	Communicate in an intelligible English accent and pronunciation.								
II	Use the four language skills i.e., Listening, Speaking, Reading and Writing effectively.								
III	Develop the art of writing simple English with correct spelling, grammar and punctuation.								

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	,				
AHS001.01	CLO 1	Understand the value of English as an international language and try to improve the knowledge regarding language skills and elements to be perfect in their usage.	PO 10	Mapping 1	
AHS001.02	CLO 2	Develop the ability to listen effectively in order to analyze the language used in descriptions and narrations.	PO 9	2	
AHS001.03	CLO 3	Paraphrase listening skills for different purposes with special emphasis on intensive listening.	PO 9	2	
AHS001.04	CLO 4	Interpret how to contextualize the use of language for different purposes.	PO 9 PO 10	2	
AHS001.05	CLO 5	Ability to comprehend speaking skills for different purposes with special emphasis on intensive listening	PO 9, PO 10, PO 11	3	
AHS001.06	CLO 6	Express fluently without any grammatical mistakes and also give presentations with proper modulation.	PO 10	3	
AHS001.07	CLO 7	Translate the importance of critical reading to get information from the context with the help of root words and contextual clues.	PO 10	3	
AHS001.08	CLO 8	Grasp the importance of reading skills for focused and selective information at various levels of professional career.	PO 10	3	
AHS00.09	CLO 9	Summarize the topic to write different types of argumentative, narrative, descriptive and persuasive paragraphs and essays.	PO 9, PO 10	3	
AHS001.10	CLO 10	Infer the use of language for developing behavioral skills.	PO 9, PO 10, PO 11, PSO 3	2	
AHS001.11	CLO 11	Translate the importance of reading techniques and applying it to literary texts.	PO 11	3	
AHS001.12	CLO 12	Ability to learn and understand techniques of grammar to apply in the functions of English language	PO 10	2	
AHS001.13	CLO 13	Remember to use the knowledge of grammar and vocabulary in writing more meaningfully.	PO 10	3	
AHS001.14	CLO 14	Infer the importance of language and applying to learn to be sensitive according to the needs of the society.	PO 9, PO 10, PO 11, PSO 3	2	
AHS001.15	CLO 15	Develop writing skills in order to apply in day to day life.	PO 9, PO 10	3	
AHS001.16	CLO 16	Understand the importance of written communication for the future correspondence throw out the career of the students.	PO 9, PO 10	3	
AHS001.17	CLO 17	Develop the ability to analyze the results of experiments and be competent in writing reports, work in teams in real time situations	PO 9, PO 10	3	
AHS001.18	CLO 18	Understand the value of writing skills to be a responsive, attentive and empathetic writer in order to face the real-world situations	PO 9, PO 10	3	
AHS001.19	CLO 19	Infer the importance of vocabulary and writing as an essential ability in the real-time situations for those who desire to advance their career.	PO 11, PSO 3	2	

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs				I	Progr	am O	utcon	nes (F	POs)				ogram itcome		
CLUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CLO 1										1					
CLO 2									2						
CLO 3									2						
CLO 4									2	1					
CLO 5									3	3	1				
CLO 6										3					
CLO 7										3					
CLO 8										3					
CLO 9									3	3					
CLO 10									2	3	2			1	
CLO 11											3				
CLO 12										2					
CLO 13										3					
CLO 14									1	1	3			1	
CLO 15									3	3					
CLO 16									3	3					
CLO 17									3	3					
CLO 18									3	3					
CLO 19											2			2	

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 9, PO 10, PO11, PSO 3		PO 9, PO 10, PO11, PSO 3	Assignments	-	Seminars	PO 10
Laboratory Practices	PO 9, PO 10, PO11, PSO 3	Student Viva	PO 10	Mini Project	-	Certification	-
Term Paper	PO 9						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	LISTENING SKILLS						
discussions, n the gist of the multiple choi	Significance, essentials, barriers and effectiveness of listening; Listening to dialogues, conversation, discussions, monologues; Listening to sounds, silent letters, stressed syllables in English; Listening for the gist of the text, for identifying the topic, general meaning and specific information; Listening for multiple choice questions, positive and negative comments for interpretation. Note: instructions in theory and practice in the lab.						
Unit-II	SPEAKING SKILLS						
dialogue, cor presentations; group or a lar	essentials, barriers and effectiveness of speaking; Simple oral or casual interaction, nversation; Debates: Differences between disagreeing and being disagreeable; Brief Role plays; Generating talks based on visual or written prompts; Addressing a small ge formal gathering; Speaking about present, past experiences and future plans; Arguing thout verbal fights; Paper presentation. Note: instructions in theory and practice in the lab.						
Unit-III	READING SKILLS						
	of reading: Skimming, scanning, intensive and extensive reading; Reading n: Exercises for multiple choice questions and contextual meaning- values in Dr. Kalam.						
to mission- pr	nrichment and grammar exercises based on selective readings: Power of dreams- vision rose passage for intellectual and emotional comments; Reading for the gist of a text, for nation, for information transfer and interpretation.						
Unit-IV	WRITING SKILLS						
contrasting, p	essentials and effectiveness of writing; Writing emails; Writing paragraphs: Comparing, presentations with an introduction, body and conclusion; Writing formal and informal of invitation, accepting, declining, requesting, cover letter enclosing a CV.						
Unit-V	GRAMMAR AND VOCABULARY						
Regular and in	parts of speech, articles, prepositions, tenses, concords, phrasal verbs; Forms of verbs: rregular, direct and indirect speech, change of voice; xes, Synonyms, antonyms, one word substitutes, idioms and phrases, technical						
Text Books:							
	ni Raman, Sangeetha Sharma, "Technical Communication Principles Practices", Oxford y Press, New Delhi, 3 rd Edition, 2015.						
Reference Bo	ooks:						
Cambridge Un 2. Devaki Rec 3. Rutherford, 2010. 4. Raymond M Edition 5. Dr. N V	 Norman Whitby, "Business Benchmark: Pre-Intermediate to Intermediate – BEC Preliminary", Cambridge University Press, 2nd Edition, 2008. Devaki Reddy, Shreesh Chaudhary, "Technical English", Macmillan, 1st Edition, 2009. Rutherford, Andrea J, "Basic Communication Skills for Technology", Pearson Education, 2nd Edition, 2010. Raymond Murphy, "Essential English Grammar with Answers", Cambridge University Press, 2nd 						

XIV. COURSE PLAN:

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Explain the importance of English Language as a tool for global communication and emphasis to acquire communicative competence	CLO 1	T1:1.1
2	Recognize the importance of English as the global language.	CLO 1	T1:1.1
3	Identify the learning levels and their competencies	CLO 1	T1:1.1-1.5
4-7	Recall the functions of punctuation and practice exercises	CLO 6, CLO12	R3:5
8	Develop the ability to understand that speaking skills are essential to be a responsive, attentive and empathetic speaker in order to face the real-world situations.	CLO 5, CLO 14	R2:1.1
9-11	Apply the knowledge of preparation for oral presentation	CLO 6	R4:2.21
12	Identify common errors in the language through the concept of word formation	CLO 13, CLO 19	R4:60.1
13-15	Prepare the students to be aware of the importance of commonly used technical vocabulary	CLO 19	R4:1.1-2.1
16	Infer the concept of grammatical ambiguity & sentence construction	CLO 6, CLO 12	R4:4.2
17	Recognize the concept of "Subject-Verb agreement", to familiarize the students with the usage of "Concord"	CLO 6	R3:1.3
18-22	Identify and understand conventional signs, prefixes, suffixes, Synonyms, antonyms, one word substitutes used by writers to make their meaning clear to the reader	CLO 13	R4:47.1
23	Appraise the students in order to acquire the knowledge of sentence structure	CLO 6	R4:42.1
24-25	Learn to use the vocabulary in writing more meaningfully	CLO 13	R3:4.4
26-27	Infer the difference between phrases and idioms & learn to use them in sentences	CLO 13	R3:4.2
28	To make the students learn and identify commonly used technical vocabulary.	CLO 13	R4:1.3
29	Understand the significance, essentials, and effectiveness of reading	CLO 7, CLO 8	T1:2.4
30	Interpret derivatives, and standard abbreviations in English through reading skills	CLO 11	T1:27.2
31-33	Infer the gist of the text, for identifying the topic through reading skills	CLO 11	R4:5.8
34	Apply the general meaning and specific information through writing skills	CLO 16	T1:2.7
35	Analyze and Interpret multiple choice questions, positive and negative comments through comprehension passages	CLO 17	T1:2.6
36	Identify passage for intellectual and emotional comments; reading for the gist of a text.	CLO 11	T1:4.15
37	Associate the students to identify their common errors in the language	CLO 9	R2:3
38	Understand the importance of proper punctuation, creating coherence, organizing principles of paragraphs in documents to foster the writing skills of the students	CLO 17	R2:3
39	Evaluate Letter writing-formal and Informal writing and E-mail writing.	CLO 19	T1:4.13
40	To make learners aware of the selection of language to make presentations and prepare the students for an effective presentation giving them necessary inputs	CLO 18	T1:4.13
41	Distinguish writing skills such as describing, defining,	CLO 17	T1:4.13

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	classifying, writing introduction and conclusion.		
42-43	Evaluate writing skills through creating coherence, organizing principles of paragraphs in documents.	CLO 9	T1:3.10
44-45	Understand the importance of vocabulary enrichment and grammar exercises to foster the writing skill of the students.	CLO 19	T1:4.13

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Construct basic and intermediate skills in English language.	Seminars	PO 10	PSO 3
2	Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work.	Seminars / NPTEL	PO 9	PSO 3
3	To build confidence for communicating in English and create interest for the life-long learning of English language.	Guest lecture	PO 10	PSO 3

Prepared by:

Ms. B Anand Lakshmi, Associate Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	LINEAR A	LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATION				
Course Code	AHS002					
Programme	B.Tech					
Semester	I AE	I AE CSE IT ECE EEE ME CE				
Course Type	Foundation					
Regulation	IARE - R16					
		Theory			cal	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Chief Coordinator	Ms. P Rajar	ni, Assistant Profe	essor			
Course Faculty	Dr. M Anita, Professor Mr. J Suresh Goud, Assistant Professor Ms. P Srilatha, Assistant Professor Ms. C Rachana, Assistant Professor Ms. B Praveena, Assistant Professor					

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes Types of matrices, difference calculus methods and differential equations. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Linear Algebra and Ordinary Differential Equations	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	~	Chalk & Talk	>	Quiz	×	Assignments	×	MOOCs
	~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
ſ	×	Open Ended Experim	ments					

V. **EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Theory		
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks	
CIA Marks	25	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part-A shall have five compulsory questions of one mark each. In part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Ouiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on
	mathematics, science, engineering fundamentals, and an		real-world
	engineering specialization to the solution of complex		problems
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 4	Conduct investigations of complex problems: Use research-	1	Term Paper
	based knowledge and research methods including design of		
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	•	1	Seminar
	aeronautical/aerospace engineering in innovative, dynamic and		
	challenging environment for design and development of new		
D <i>G</i> O A	products.		
PSO 2		-	-
	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles.		
PSO 3	1 8 0	-	-
	different types of in house and training and industry practice to		
	fabricate and test and develop the products with more		
	innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats.		
	2 - Hight 2 - Madiume 1 - Law		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:								
Ι	Enrich the knowledge of probability on single random variables and probability distributions.							
II	Apply the concept of correlation and regression to find covariance.							
III	Analyze the given data for appropriate test of hypothesis.							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AHS002.01	CLO 1	Demonstrate knowledge of matrix	PO 1	1
		calculation as an elegant and powerful		
		mathematical language in connection with		
		rank of a matrix.		
AHS002.02	CLO 2	Finding rank by reducing the matrix to	PO 1	3
		Echelon and Normal forms.		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS002.03	CLO 3	Determine inverse of the matrix by Gauss Jordon Method.	PO 1	3
AHS002.04	CLO 4	Apply the method of LU Decomposition and solve the simultaneous equations.	PO 2	2
AHS002.05	CLO 5	Use the method of LU factorization real world problems such as circuit designing and solving complex circuits	PO 2	3
AHS002.06	CLO 6	Use the method of LU factorization real world problems such as economize and accumulate sums in double precision Computer Programme.	PO 2	2
AHS002.07	CLO 7	Interpret the Eigen values and Eigen vectors of matrix for a linear transformation and use properties of Eigen values	PO 4	1
AHS002.08	CLO 8	Understand the concept of Eigen values in real world problems of control field where they are pole of closed loop system.	PO 4	1
AHS002.09	CLO 9	Apply the concept of Eigen values in real world problems of mechanical systems where Eigen values are natural frequency and mode shape.	PO4	1
AHS002.10	CLO 10	Use the system of linear equations and matrix to determine the dependency and independency.	PO 2	2
AHS002.11	CLO 11	Determine a modal matrix, and reducing a matrix to diagonal form.	PO 1	3
AHS002.12	CLO 12	Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.	PO 1	3
AHS002.13	CLO 13	Solving differential equations of first order.	PO 1	3
AHS002.14	CLO 14	Finding orthogonal trajectories of Cartesian and polar equations.	PO 1, PO 2	2
AHS002.15	CLO 15	Apply the first order differential equations in real world problems such as Newton's Law of cooling and Law of natural growth and decay	PO 2	2
AHS002.16	CLO 16	Solving Second and higher order differential equations with constant coefficients.	PO 2	2
AHS002.17	CLO 17	Apply the second order differential equations for real world problems of electrical circuits and simple harmonic motion.	PO 4	1
AHS002.18	CLO 18	Apply the Mean value theorems for the single variable functions.	PO 1, PO 2	2
AHS002.19	CLO 19	Understand the basic concepts of Partial Differential equations.	PO 1, PO 2	2
AHS002.20	CLO 20	Determine Jacobian for the coordinate transformation	PO 1, PO 2	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS002.21	CLO 21	Apply the technique of Jacobian and inverse Jacobian relation to real world problems such as kinematics and inverse kinematic solutions of robot manipulators.	PO 4	1
AHS002.22	CLO 22	Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian.	PO 1	3
AHS002.23	CLO 23	Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers	PO 1	3
AHS002.24	CLO 24	Understand the concept and acquire the knowledge for attempting the competitive exams	PO 4	1

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs				Pr	ograi	n Ou	tcome	s (PC	Ds)				Pr Ou	ogram utcome	ı Speci es (PSC	fic Ds)
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	1												1			
CLO 2	2												1			
CLO 3	3												1			
CLO 4		2														
CLO 5		3														
CLO 6		2														
CLO 7				1									1			
CLO 8				1												
CLO 9				2									1			
CLO 10		2											1			
CLO 11	3															
CLO 12	3															
CLO 13	3															
CLO 14	1	2											1			
CLO 15		2														

CLOs				Pı	ograi	n Ou	tcome	es (PC)s)						n Speci es (PSC	
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 16		2														
CLO 17				1									1			
CLO 18	1	2											1			
CLO 19	1	2											1			
CLO 20	1	2											1			
CLO 21				1												
CLO 22	3															
CLO 23	3															
CLO 24				1												

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2	SEE Exams	PO 1, PO2, PO 4	Assignments	-	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I THEORY OF MATRICES Real Matrices: Symmetric, skew-symmetric and orthogonal matrices; Complex matrices: Hermitian, Skew-Hermitian and unitary matrices; Elementary row and column transformations, elementary matrix,

Skew-Hermitian and unitary matrices; Elementary row and column transformations, elementary matrix, finding rank of a matrix by reducing to Echelon form and normal form; Finding the inverse of a matrix using elementary row/column transformations: Gauss-Jordan method; Solving of linear system of equations by LU decomposition method.

Unit-II LINEAR TRANSFORMATIONS

Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and independence of vectors; Linear transformation; Eigen values and eigen vectors of a matrix; Properties of eigen values and eigen vectors of real and complex matrices; Diagonalization of matrix.

Unit-IIIDIFFERENTIAL EQUATIONS OF FIRST ORDER AND THEIR APPLICATIONSFormation of a differential equation; Differential equations of first order and first degree: Exact, non exact, linear equations; Bernoulli equation; Applications of first order differential equations: Orthogonal trajectories; Newton's law of cooling; Law of natural growth and decay.Unit-IVHIGHER ORDINARY LINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONSLinear differential equations of second and higher order with constant coefficients, non homogeneous term of the type $f(x) = e^{ax}$, sin ax , cos ax and $f(x) = x^n$, $e^{ax}v(x)$, $x^nv(x)$; Method of variation of parameters; Applications to electrical circuits and simple harmonic motion.Unit-VFUNCTIONS OF SINGLE AND SEVERAL VARIABLESMean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems. Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems. Multipliers.1Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9 th Edition, 2014.2B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42 nd Edition, 2012.Reference Books:1RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5 th Edition, 2016.2Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1 st Edition, 2009.3Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3 rd Edition, 2015.									
exact, linear equations; Bernoulli equation; Applications of first order differential equations: Orthogonal trajectories; Newton's law of cooling; Law of natural growth and decay. Unit-IV HIGHER ORDINARY LINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONSLinear differential equations of second and higher order with constant coefficients, non homogeneous term of the type $f(x) = e^{ax}$, sin ax , cos ax and $f(x) = x^n$, $e^{ax}v(x)$, $x^nv(x)$; Method of variation of parameters; Applications to electrical circuits and simple harmonic motion.Unit-VFUNCTIONS OF SINGLE AND SEVERAL VARIABLESMean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: 1.N. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9 th Edition, 2014.2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42 nd Edition, 2012. Reference Books: 1. RK Jain & SRK Iyengar, "Advanced Engineering Mathematics-1", Tata Mc Graw Hill Education, 1 th Edition, 2009.2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1 th Edition, 2009.3. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3 rd Edition, 2016.	Unit-III	DIFFERENTIAL EQUATIONS OF FIRST ORDER AND THEIR APPLICATIONS							
Unit-IVHIGHER ORDINARY LINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONSLinear differential equations of second and higher order with constant coefficients, non homogeneous term of the type $f(x) = e^{ax}$, sin ax , cos ax and $f(x) = x^n$, $e^{ax}v(x)$, $x^nv(x)$; Method of variation of parameters; Applications to electrical circuits and simple harmonic motion.Unit-VFUNCTIONS OF SINGLE AND SEVERAL VARIABLESMean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers.Text Books:1.1.Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9 th Edition, 2014.2.B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42 nd Edition, 2012.Reference Books:1.1.Rk Jain & SRK Iyengar, "Advanced Engineering Mathematics-1", Tata Mc Graw Hill Education, 1 th Edition, 2009.3.Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3 rd Edition, 2016.	exact, line	exact, linear equations; Bernoulli equation; Applications of first order differential equations: Orthogonal							
Unit-IV APPLICATIONS Linear differential equations of second and higher order with constant coefficients, non homogeneous term of the type $f(x) = e^{ax}$, $\sin ax$, $\cos ax$ and $f(x) = x^n$, $e^{ax}v(x)$, $x^nv(x)$; Method of variation of parameters; Applications to electrical circuits and simple harmonic motion. Unit-V FUNCTIONS OF SINGLE AND SEVERAL VARIABLES Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: 1. 1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9 th Edition, 2014. 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42 nd Edition, 2012. Reference Books: 1. 1. RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5 th Edition, 2016. 2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1 st Edition, 2009. 3. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3 rd Edition,	u uje e torre.								
 term of the type f(x) = e^{ax}, sin ax, cos ax and f(x) = xⁿ, e^{ax}v(x), xⁿv(x); Method of variation of parameters; Applications to electrical circuits and simple harmonic motion. Unit-V FUNCTIONS OF SINGLE AND SEVERAL VARIABLES Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: 1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014. 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012. Reference Books: 1. RK Jain & SRK Iyengar, "Advanced Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. 3. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 		APPLICATIONS							
 parameters; Applications to electrical circuits and simple harmonic motion. Unit-V FUNCTIONS OF SINGLE AND SEVERAL VARIABLES Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012. Reference Books: RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 									
Unit-V FUNCTIONS OF SINGLE AND SEVERAL VARIABLES Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: 1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9 th Edition, 2014. 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42 nd Edition, 2012. Reference Books: 1. RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5 th Edition, 2016. 2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1 st Edition, 2009. 3. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3 rd Edition,									
 Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012. Reference Books: RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 	parameters	s; Applications to electrical circuits and simple harmonic motion.							
 value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers. Text Books: Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012. Reference Books: RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 	Unit-V	FUNCTIONS OF SINGLE AND SEVERAL VARIABLES							
 Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012. Reference Books: RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 	value theo maxima ar	brems-without proofs. Functions of several variables: Functional dependence, Jacobian, and minima of functions of two variables without constraints and with constraints; Method of							
 Edition, 2014. 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012. Reference Books: RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 	Text Book	s:							
 Reference Books: RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 									
 RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 	2. B. S. C	Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42 nd Edition, 2012.							
 2016. 2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009. 3. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 	Reference	Books:							
 st Edition, 2009. Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 		in & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5 th Edition,							
	1 st Edi	tion, 2009.							
		nthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3 rd Edition,							

XIV. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Theory of Matrices Introduction of matrices	CLO 1	T1:22.5 R1:2.3
2-3	Real and complex matrices	CLO 2	T1:22.5 R1:2.4
4-6	Find rank by echelon and normal form	CLO 2	T1:22.6 R1:2.6
7	Gauss-Jordan method	CLO 4	T1:22.7 R1:4.4
8	LU decomposition method	CLO 4	T1:22.7 R1:4.10
9-12	Cayley Hamilton theorem	CLO 7	T1:22.8 R1:4.15
13-16	Eigen values and Eigen vectors	CLO 9	T1:22.9 R1:5.4
17-18	Diagonalisation	CLO 9	T1:22.9 R1:5.8
1922	Differential equations Introduction of first order differential equations	CLO 11	T1:23.10 R1:6.8
23-24	Orthogonal trajectories	CLO 11	T1:23.10 R1:6.13

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
25-26	Applications	CLO 13	T1:23.9 R1:7.5
27-30	Second and Higher order differential equations with constant coefficients	CLO 11	T1:23.10 R1:7.5
31-34	Method of variation of parameters	CLO 9	T1:23.10 R1:8.1
35-36	Applications of second order differential equations	CLO 14	T1:23.1 R1:9.2
37	Differential Calculus Methods Verification of Rolle's Theorem to the given functions	CLO 14	T1:23.1 R1:9.4
38-39	Verification of Lagrange's Mean value theorem to the given functions	CLO 14	T1:23.1 R1:9.9
40	Verification of Cauchy's mean value theorem to the given functions	CLO 14	T1:23.1 R1:9.10
41	Functional dependence for two and three functions	CLO 14	T2:27.5 R1:10.2
42-43	Maxima and minima of functions of two variables without constraints	CLO 17	T2:27.7 R1:11.3
44-45	Lagranges method of undetermined multipliers	CLO 17	T2:27.8 R1:11.6

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with P0s	Relevance with PSOs
1	To improve standards and analyze the concepts.	Guest lecture	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by: Ms. P Rajani, Assistant Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGINE	ENGINEERING CHEMISTRY								
Course Code	AHS005	AHS005								
Programme	B. Tech	B. Tech								
Semester	I A	E CIVIL CSE E	ECE EEE IT	ME						
Course Type	Foundatio	Foundation								
Regulation	IARE - R16									
		Theory		Practio	cal					
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits					
	3	-	3	2	1					
Chief Coordinator	Ms. V An	itha Rani, Associat	e Professor							
Course Faculty	Dr. C Mahendar, Professor Mr. M Praveen, Assistant Professor Mr. B Raju, Assistant Professor Ms. M Malathi, Assistant Professor Mr. G Mahesh Kumar, Assistant Professor Ms. T Mallika, Assistant Professor Ms. M Lakshmi Prasanna, Assistant Professor Ms. M Swathi, Assistant Professor									

I. COURSE OVERVIEW:

The primary objective of an Engineering Chemistry course is to introduce the students to the concepts and applications of chemistry in engineering. It should cultivate in them an ability to identify chemistry in each piece of finely engineered products used in households and industry. It aims to strengthen the fundamental concepts of chemistry and then builds an interface with their industrial applications. It deals with applied and industrially useful topics, such as water technology, engineering materials, electrode potential and cells, fuels, polymers and corrosion. Water and its treatment for various purposes, engineering materials such as plastics, composites, ceramic, abrasives, their preparation, properties and applications, conventional and non-conventional energy sources, nuclear, solar, various batteries, combustion calculations, corrosion and control of metallic materials.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Basic principles of chemistry

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks		
Engineering Chemistry	70 Marks	30 Marks	100		

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experim	nents					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marka		
Type of Assessment	CIE Exam	Total Marks		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Seminar
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	1	Seminar
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
	Environment and sustainability: Understand the impact of	2	Presentation on
PO 7	the professional engineering solutions in societal and		real-world
PO /	environmental contexts, and demonstrate the knowledge of,		problems
	and need for sustainable development.		-

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	1	Seminar
	aeronautical/aerospace engineering in innovative, dynamic and		
	challenging environment for design and development of new		
	products.		
PSO 2	Problem-solving Skills: Imparted through simulation language	-	-
	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice to		
	fabricate and test and develop the products with more		
	innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats.		
			•

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:								
Ι	Apply the electrochemical principles in batteries.								
Π	Understand the fundamentals of corrosion and development of different techniques in corrosion control.								
III	Analysis of water for its various parameters and its significance in industrial, applications.								
IV	Improve the fundamental science and engineering principles relevant to materials.								

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
AHS005.01	CLO 1	Extrapolate the knowledge of electrolytic cell,	PO 1	3	
		electrochemical cell, electrode potential and			
		reference electrodes.			
AHS005.02	CLO 2	Use of primary and secondary batteries in	PO 1	1	
		various fields such as automobiles, railways,	PO 2		
		medical devices, aircrafts and day to day life.			
AHS005.03	CLO 3	Explain the characteristic factors of a metal and	PO 1	2	
		environment influencing the rate of corrosion.	PO 7		
AHS005.04	CLO 4	Use appropriate methods such as protective,	PO 1	2	
		metallic and organic coatings to control	PO 7		
		corrosion in metals.			
AHS005.05	CLO 5	Evaluate the quality and utility of suitable water	PO 1	3	
		for industrial as well as domestic applications.	PO 7		
AHS005.06	CLO 6	Use innovative methods to improve the quality	PO 1	2	
		of soft water for Potable and industrial purpose at	PO 7		
		cheaper cost.			
AHS005.07	CLO 7	Understand the concepts of polymers for	PO 1	1	
		viscoelastic nature of polymer materials in real-	PO 7		
		time application.			
AHS005.08	CLO 8	Demonstrate the ability to use polymeric	PO 1	1	
		materials for engineering problems in different	PO 7		
		domains.			
AHS005.09	CLO 9	Justify the immense importance of basic	PO 1	1	
		constructional material, Portland cement in civil			
	GT 0 10	engineering works.	DO 1		
AHS005.10	CLO 10	Describe various instruments used for measuring	PO 1	3	
		various properties of lubricants in industries.			
AHS005.11	CLO 11	Understand refractory use in metallurgical	PO 1	2	
		furnaces, kilns and other equipments.			
AHS005.12	CLO 12	Demonstrate comprehensive knowledge of	PO 1	2	
		conventional fuel properties on engine			
		performance.			
AHS005.13	CLO 13	Understand the importance of cracking, knocking	PO 1	2	
1115005.15		in IC engines and operations involved in	PO 2	2	
		0 1	102		
	GT 0 1 1	petroleum refining for real-time application.	DO 1		
AHS005.14	CLO 14	Describe the physical and chemical properties of	PO 1	1	
		alternate fuels like natural gas, LPG and CNG.			
AHS005.15	CLO 15	Determine efficiency of the fuel in terms of	PO 1	2	
		calorific value and combustion reactions of the			
		fuel.			
AHS005.16	CLO 16	Understand the concepts of electro chemistry in	PO 1	2	
1110005.10		solar cell, Fuel cells and batteries for real-time	101	2	
		application.			
AHS005.17	CLO 17	Understand the concepts of corrosion control	PO 1	2	
		methods in pipeline leaks and ruptures as real-	PO 7		
		time application.			
AHS005.18	CLO 18	Understand the concepts of water technology in	PO 1	2	
		applications of image recognition for real-time	PO 7	_	
	1	water level and surface velocity.			

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

CLOs		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
CLUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3															
CLO 2	2	1														
CLO 3	2						2									
CLO 4	2						2									
CLO 5	3						3									
CLO 6	2						2									
CLO 7	2						1									
CLO 8	1						1									
CLO 9	1															
CLO 10	3															
CLO 11	2															
CLO 12	2												1			
CLO 13	3	1											1			
CLO 14	1															
CLO 15	2												1			
CLO 16	2															
CLO 17	2						2									
CLO 18	2						2									

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2, PO 7	SEE Exams	PO 1,PO 2 PO 7	Assignments	PO 2	Seminars	PO 1, PO 2
Laboratory Practices	PO 1	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	ELECTROCHEMISTRY AND BATTERIES
conductance Electrode J Calomel el	mistry: Basic concepts of electrochemistry; Conductance: Specific, equivalent and molar e and effect of dilution on conductance; Electrochemical cells: Galvanic cell (daniel cell); potential; Electrochemical series and its applications; Nernst equation; Types of electrodes: ectrode, quinhydrone electrode; Batteries: Classification of batteries, primary cells (dry cells) ary cells (lead-acid battery, Ni-Cd cell), applications of batteries, numerical problems.
Unit-II	CORROSION AND ITS CONTROL
electrocher and nature methods: C Surface coa	Introduction, causes and effects of corrosion; Theories of corrosion: Chemical and nical corrosion with mechanism; Factors affecting the rate of corrosion: Nature of the metal of the environment; Types of corrosion: Waterline and crevice corrosion; Corrosion control Cathodic protection- sacrificial anodic protection and impressed current cathodic protection; atings: Metallic coatings, methods of application of metallic coatings-hot dipping(galvanizing, ectroplating(copper plating); Organic coatings: Paints, its constituents and their functions.
Unit-III	WATER TECHNOLOGY
hardness: 7 and perma method; Bo Treatment conditionin specificatio	urces and impurities of water, hardness of water, expression of hardness-units; Types of Femporary hardness, permanent hardness and numerical problems; Estimation of temporary nent hardness of water by EDTA method; Determination of dissolved oxygen by Winkler's biler troubles: Priming, foaming, scales, sludges and caustic embrittlement. of water: Internal treatment of boiler feed water- carbonate, calgon and phosphate ag, softening of water by Zeolite process and Ion exchange process; Potable water-its ons, steps involved in the treatment of potable water, sterilization of potable water by n and ozonization, purification of water by reverse osmosis process.
Unit-IV	MATERIALS CHEMISTRY
co-polymer Preparation Natural ru Characteris reinforced Lubricants:	chemistry: Polymers-classification with examples, polymerization-addition, condensation and rization; Plastics: Thermoplastics and thermosetting plastics; Compounding of plastics; a, properties and applications of polyvinyl chloride, Teflon, Bakelite and Nylon-6, 6; Rubbers: lbber its process and vulcanization; Elastomers: Buna-s and Thiokol rubber; Fibers: stics of fibers, preparation properties and applications of Dacron; Characteristics of fiber plastics; Cement: Composition of Portland cement, setting and hardening of Portland cement; c Classification with examples; Properties: Viscosity, flash, fire, cloud and pour point; es: Characteristics and classification with examples.
Unit-V	FUELS AND COMBUSTION
coal: Proxi catalytic cr and applic Value(GCV	ition, classification of fuels and characteristics of a good fuels; Solid fuels: Coal; Analysis of imate and ultimate analysis; Liquid fuels: Petroleum and its refining; Cracking: Fixed bed racking; Knocking: Octane and cetane numbers; Gaseous fuels: Composition, characteristics rations of natural gas, LPG and CNG; Combustion: Calorific value: Gross Calorific V) and Net Calorific Value(NCV), calculation of air quantity required for complete combustion nerical problems.
Text Book	
	ain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 15 th n, 2015.

2.	. Shashi Chawla, "Text Book of Engineering Chemistry" Dhanat Rai and Company, 1st Edition 2011
R	eference Books:

- 1.B. Siva Shankar, "Engineering Chemistry", Tata McGraw Hill Publishing Limited, 3rd Edition, 2015.
- 2. S. S. Dara, Mukkanti, "Text of Engineering Chemistry", S. Chand & Co, New Delhi, 12th Edition, 2006.
- 3. C. V. Agarwal, C. P. Murthy, A. Naidu, "Chemistry of Engineering Materials", Wiley India, 5thEdition, 2013.
- 4.R. P. Mani, K. N. Mishra, "Chemistry of Engineering Materials", Cengage Learning, 3rd Edition, 2015.

XIV.COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	CLOs	Reference
1	Understands the concept of electrochemistry. Differentiate the electronic conductors and electrolytes.	CLO 1	T1:5.1,6.3
2	Define the terms specific, equivalence and molar conductance. Explain the dilution effect on these conductance	CLO 1	T1:5.5
3	Understands the concept of specific, equivalence and molar conductance. Define the EMF of the cell. Demonstrate the Daniel cell.	CLO 1	T2:6.1,6.2, 6.3
4	Describe the construction and chemical reactions of different electrodes. Use the Calomel	CLO 1	T2:11,12.2.1
5	Quinhydrone electrodes in calculation of potential of the single electrode.	CLO 1	T1:6.7(4)
6	Derive the relation between cell reaction and emf of the single electrodes.	CLO 1	T2:3.4
7	Use the standard potential values of elements from electrochemical series.	CLO 1	T2:5,5.1
8	Define the battery; differentiate the primary and secondary batteries. Demonstrate the construction of the dry cell.	CLO 2	T2:16,17.1
9	Identify the anode, cathode and electrolyte in different types of secondary batteries. Employ the applications of different types of batteries.	CLO 2	T2:17.3
10	Identify the anode, cathode and electrolyte in different types of secondary batteries. Employ the applications of different types of batteries.	CLO 2	T2:17.4
11	Define corrosion and its disadvantages.	CLO 3	T2:1.1
12	Explain the mechanism of oxidation corrosion when dry gases attack on metal.	CLO 3	T2:2.1
13	Explain the mechanism of hydrogen evolution type and oxygen absorption type corrosion.	CLO 3	T2:2.2
14	Distinguish the types of corrosion.	CLO 3	T2:2.4.5
15	Analyze the effect of different factors on rate of corrosion.	CLO 3	T2:5,5.1,5.2
16	Explain the process of cathodic protection with examples.	CLO 4	T2:6.4
17	Use the methods of application of metallic coatings and Relate the galvanization and tinning	CLO 4	T1:17.1
18	Explain the process of electroplating. Apply the organic coatings for control of corrosion.	CLO 4	T1:8.6 T2:6.3.3
19	List the various sources of water, Differentiate the temporary and permanent hardness and give its units.	CLO 5	T2:3,4,5
20	Calculate the total, permanent and temporary hardness of	CLO 5	T2:6

Lecture No	Topics to be covered	CLOs	Reference
	sample hard water by using EDTA		
21	Calculate the dissolved oxygen in water by Winkler's method	CLO 5	T1:1.14(4)
22-23	Recognize the boiler troubles.	CLO 5	T2:9.2,9.5
24	Discuss the internal treatment methods of boiler feed water. Name the different chemicals used in internal treatment.	CLO 6	T2:12,12.4, 12.2,12.3
25	Explain the process of zeolite and analyze the advantages and disadvantages.	CLO 6	T2:11.2
26	Explain ion-exchange process.	CLO 6	T2:11.3,13
27	Demonstrate the treatment of potable water Purification of potable water. Describe the process of reverse osmosis	CLO 6	T2:13,14 (d)
28	Define monomer and polymer Explain the mechanism of different types of Chain and step growth polymerization.	CLO 7	T2:2,2.2,4,4. 1,4.2,4.7
29	Distinguish the thermoplastic and thermo set plasitcs. Illustrate the compounding of plastics.	CLO 7	T1:3.14,3.1 3.12
30	Identify the preparation, properties and applications of different thermo and thermo set plastics.	CLO 8	T2:2.3,2.7,2. 8
31	Identify the preparation, properties and applications of thermo set plastics. Explain about natural rubber.	CLO 8	T2:3,3.1,3.2, 3.3
32	Explain the preparation, properties and applications of synthetic rubbers.	CLO 8	T1:3.24 T2:4.2
33	Explain the preparation, properties and applications of fibers.	CLO 8	T1:3.28 R4:114
34	Generalize the process of setting and hardening reactions of cement	CLO 9	T2:9.3.2, 9.3.3
35	Define the term lubricant and it's classification.	CLO 10	T2:7.4
36	Compare the different types of lubricants based on their properties.	CLO 10	T2:7.5
37	Name the different types of refractories. Discuss the characteristics and applications of refractories.	CLO 11	T2:8.2,8.3
38	Define the fuel with examples. Categorize the different types of fuels.	CLO 12	T2:5.2,5.3
39	Analyze the different types of coals. Explain the significance of proximate analysis of coal.	CLO 12	T2:5.7,5.8,5. 8.1
40	Explain the significance of Ultimate analysis of coal.	CLO 12	T2:5.8.2
41	Identify the chemical constituents of petroleum. Describe the refining of petroleum. Define the term cracking. Distinguish the fixed bed and catalytic cracking.	CLO 13	T1:2.18,2.19 2.19(a)
42	Evaluate the octane and cetane rating of the petrol and diesel.	CLO 13	T1:2.23
43	Identify the chemical constituents of the gaseous fuel. Discuss the characteristics of natural gas. Compare the LPG and CNG.	CLO 14	T1:2.28,2.26 T2:5.14.1 R4:247
44	Explain the combustion process of different chemical constituents present in the fuel. Differentiate the HCV and LCV.	CLO 15	T2:5.4,5.5
45	Evaluate the air quantity required for complete combustion of fuel.	CLO 15	T2:5.4.1, 6.5

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Galvanic cell, batteries-lead acid	Seminars /	PO 1	PSO 1
	cells, Crevice corrosion, cathodic	Guest		
	protection, galvanizing,	Lectures /		
	Electroplating.	NPTEL		
2		Seminars /	PO 1	PSO 1
	Softening techniques, plastics,	Guest		
	cement, refining of petroleuim.	Lectures /		
		NPTEL		
3	Thiokol rubber, EDTA method,	Assignments	PO 1	PSO 1
	Dissolved oxygen, Viscosity, P ^H	/ Laboratory		
	meter.	Practices		

XIV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REOUIREMENTS:

Prepared by: Ms. V Anitha Rani, Associate Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	APPLIED	APPLIED PHYSICS				
Course Code	AHS007	AHS007				
Programme	B.Tech	B.Tech				
Semester	I A	E I	ME CE			
Course Type	Foundation					
Regulation	IARE - R16					
	Theory Practical				al	
Course Structure	Lecture	s	Tutorials	Credits	Laboratory	Credits
	3		1	4	-	-
Chief Coordinator	Dr. Rizwana, Professor					
Course Faculty	Mr. K Saibaba, Assistant Professor					

I. COURSE OVERVIEW:

The course matter is divided into five units covering duly-recognized areas of theory and study. This course develops abstract and critical reasoning by studying mathematical and logical proofs and assumptions as applied in basic physics and to make connections between physics and other branches of sciences and technology. The topics covered include dielectric and magnetic properties, acoustics of buildings, ultrasonic and equilibrium of system of forces, friction and dynamics of rigid bodies. The course helps students to gain knowledge of basic principles and appreciate the diverse applications in technological fields in respective branches and also in their lives.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Basic principles of Physics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Applied Physics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	>	Videos
×	X Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into Five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Theory Total Mar				
Type of Assessment	CIE Exam	Quiz / AAT				
CIA Marks	25	05	30			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Presentation on real-world problems
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Term Paper

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Seminar
	aeronautical/aerospace engineering in innovative,		
	dynamic and challenging environment for design and		
	development of new products.		
PSO 2	Problem-solving Skills: Imparted through simulation	-	-
	language skills and general purpose CAE packages to		
	solve practical, design and analysis problems of		
	components to complete the challenge of airworthiness		
	for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry		
	practice to fabricate and test and develop the products		
	with more innovative technologies.		
PSO 4	Successful career and entrepreneurship to prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats.		
	3 – High: 2 – Modium: 1 – Low		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:							
Ι	Develop the strong fundamentals of system of forces and friction.							
II	Strengthen the knowledge of theoretical and technological aspects of dynamics of rigid bodies.							
III	Correlate principles with applications of the dielectric and magnetic materials.							
IV	Enrich knowledge in acoustics and ultrasonic.							

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AHS007.01	CLO 1	Recall the basic principles of physics.	PO 1, PO 2	3
AHS007.02	CLO 2	Apply the concepts and principles in solving the problems of physics.	PO 1 , PO 4	2
AHS007.03	CLO 3	Acquire knowledge of basic terms related to dielectric materials and different polarization mechanisms.	PO 1 , PO 4	2
AHS007.04	CLO 4	Review properties of different magnetic materials and magnetization based on orientation of domains.	PO 1 , PO 2	2
AHS007.05	CLO 5	Recollect basic principles of acoustics of buildings and modern architectural acoustic techniques.	PO 1 , PO 2	2
AHS007.06	CLO 6	Explain production, properties and applications of ultrasonic waves	PO 1 , PO 2	2
AHS007.07	CLO 7	Review the basic concepts of system of forces.	PO 1, PO 4	1
AHS007.08	CLO 8	Analyze different law of forces and condition of equilibrium.	PO 2 , PO 4	1
AHS007.09	CLO 9	Discuss different types and laws of friction.	PO 2 , PO 4	1
AHS007.10	CLO 10	Interpret applications of friction.	PO 1, PO 2	2
AHS007.11	CLO 11	Describe rotational motion of rigid bodies and moment of inertia of some of the regular shapes.	PO 1 , PO 4	2
AHS007.12	CLO 12	Identify and apply theorems of moment of inertia.	PO 1 , PO 2	3
AHS007.13	CLO 13	Correlate different concept of physics with day to day life applications.	PO 1	2
AHS007.14	CLO 14	Understand the technical importance of moment of inertia of regular and irregular bodies.	PO 2	2
AHS007.15	CLO 15	Identify the modern engineering devices based on basic principles of forces and friction.	PO 4	1

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3	2											2			
CLO 2	2			2									1			
CLO 3	3			1									2			
CLO 4	1	3														
CLO 5	3	2														
CLO 6	2	2											2			
CLO 7	2			1									2			

CLOs		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 8		2		1												
CLO 9		1		1									2			
CLO 10	3	2											1			
CLO 11	2			1												
CLO 12	3	2											2			
CLO 13	2															
CLO 14		2											1			
CLO 15				1												

3 = **High**; **2** = **Medium**; **1** = **Low**

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO2	SEE Exams	PO1,PO4	Assignments	PO4	Seminars	PO2
Laboratory Practices	PO1,PO2	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

>	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	DIELECTRIC AND MAGNETIC PROPERTIES						
Dielectric Properties: Basic definitions, electronic, ionic and orientation polarizations-qualitative; Internal field in solids. Magnetic Properties: Basic definitions, origin of magnetic moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic moment, domain theory of ferro magnetism on the basis of hysteresis curve.							
Unit-II	ACOUSTICS AND ULTRASONICS						
measureme Ultrasonics	Acoustics: Reverberation, reverberation time, Sabine's formula (qualitative), absorption coefficient, measurement of absorption coefficient, factors affecting acoustics of an auditorium and their remedies; Ultrasonics: Introduction; Generation of ultrasonic waves; Magnetostriction method, piezoelectric method, properties, applications.						
Unit-III	EQUILIBRIUM OF SYSTEM OF FORCES						
Introduction, basic concepts, system of forces, coplanar concurrent forces, force systems in plane, parallel forces in plane;							
Force systems in space, couples, resultant, Lami's theorem, triangle law of forces, polygon law of forces, condition of equilibrium.							

	FRIGHTON
Unit-IV	FRICTION

Friction: Types of friction, limiting friction, laws of friction, angle of repose, equilibrium of body laying on rough inclined plane, Application of friction: ladder friction, wedge friction, screw friction.

Unit-V **DYNAMICS OF RIGID BODIES - MOMENT OF INERTIA**

Rotational motion, torque, angular momentum, relation between torque and angular momentum, angular momentum of system of particles, moment of inertia, expression for moment of inertia, radius of gyration, theorems on moment of inertia, moment of inertia of thin rod, rectangular lamina, circular disc.

Text Books:

- 1. Dr. K. Vijaya Kumar, Dr. S. Chandralingam, "Modern Engineering Physics", Chand & Co. New Delhi, 1st Edition, 2010.
- R. C Hibbler, "Engineering mechanics", Prentice Hall, 12th Edition, 2009. 2.

Reference Books:

- R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Edition, 2001. 1.
- 2.
- Timoshenko, D. H. Young, "Engineering mechanics", Tata Mc Graw Hill, 5th Edition, 2013. Hitendra K Malik, A. K. Singh, "Engineering Physics", Mc Graw Hill Education, 1stEdition,2009. 3.
- 4. S. S. Bhavikatti, "A text book of Engineering mechanics", New age international, 1st Edition,
- 2012.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Acquire knowledge of basic terms related to dielectric materials.	CLO 1	T1:13.5 R1:1.3
2	Discuss different polarization mechanisms in dielectrics	CLO 2	T1:13.5 R1:1.3
3-4	Derive expression for total electric field at a given point inside dielectrics.	CLO 32	T1:13.5 R1:1.3
5	Acquire knowledge of basic terms related to magnetic materials.	CLO 3	T1:14.7 R1:3.4
6	Describe magnetic moment in an atom in terms of Bohr Magneton	CLO 3	T1:15.7 R1:4.10
7-8	Classify different magnetic materials based on electron theory.	CLO 4	T1:16.8 R1:4.15
9	Examine the spontaneous magnetization in ferromagnets based on orientation of domains	CLO 4	T1:16.9 R1:5.4
10	Explain the basic terms related to acoustics of buildings	CLO 5	T1:17.9 R1:5.8
11	Analyze the Sabine's formula of reverberation time	CLO 5	T1:18.10 R1:6.8
12	Calculate the absorption coefficient of a surface	CLO 6	T1:19.10 R1:6.13
13	Identify remedies for factors affecting architectural acoustics	CLO 6	T1:19.9 R1:7.5
14-15	Recall basics of ultrasonics	CLO 5	T1:23.10 R1:7.5
16	Explain the production of ultrasonics by Magnetostriction method	CLO 6	T1:23.10 R1:8.1
17	Explain the production of ultrasonics by Piezoelectric method	CLO 6	T1:23.1 R1:9.2
18-19	Review the properties of ultrasonics	CLO 6	T1:23.1 R1:9.4

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference	
20	Discuss the applications of ultrasonics	CLO 6	T1:23.1 R1:9.9	
21	Identify the principle of forces	CLO 7	T1:23.1 R1:9.10	
22	Recall different system of forces	CLO 7	T2:27.5 R1:10.2	
23	Acquire knowledge of force systems in space	CLO 7	T2:27.7 R1:11.3	
24-25	Analyze parallel forces in plane	CLO 8	T2:27.8 R1:11.6	
26	Correlate couples in systems	CLO 8	T2:27.12 R1:11.7	
27-28	Apply Lami's theorem to problems	CLO 8	T2:27.12 R1:11.8	
29	Analyze triangle law of forces	CLO 8	T2:27.12 R1:11.9	
30	Analyze polygon law of forces	CLO 7	T2:27.12 R1:11.10	
31-32	Recognize condition of equilibrium	CLO 9	T2:27.14 R1:12.3	
33	Understand friction	CLO 9	T2:27.1 R1:12.7	
34-35	Discuss limiting friction	CLO 9	T2:27.17 R1:12.15	
36	Analyze laws of friction	CLO 10	T2:27.18 R1:12.19	
37-38	Describe angle of repose	CLO 10	T2:27.19 R2:14.4	
39	Identify equilibrium of body laying on rough inclined plane	CLO 10	T2:27.20 R2:14.5	
40-41	Solve problems on friction	CLO 10	T2:30.19 R2:14.5	
42-43	Understand ladder friction	CLO 10	T2:30.20 R2:15.5	
44-45	Discuss wedge friction	CLO 10	T2:32.19 R2:16.5	
46-47	Describe screw friction	CLO 10	T2:32.20 R2:16.5	
48-49	Explain basic concept rotational motion	CLO 11	T2:33.1 R2:16.6	
50-51	Derive relation between torque and angular momentum	CLO 11	T2:34.1 R2:17.1	
52-53	Acquire the knowledge of moment of inertia	CLO 12	T2:35.2 R2:17.2	
54-55	Examine radius of gyration	CLO 11	T2:36.1 R2:18.1	
56-57	Understand theorems on moment of inertia	CLO 12	T2:38.19 R2:16.5	
58-59	Calculate moment of inertia of thin rod, Rectangular lamina	CLO 12	T2:39.19 R2:16.5	
60	Calculate moment of inertia of circular disc	CLO 12	T2:40.19 R2:16.5	

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With Pos	Relevance With Psos
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	Guest lecture	PO 2	PSO 1

Prepared by: Mr. K Saibaba, Assistant Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGIN	ENGINEERING DRAWING				
Course Code	AMEO	AME001				
Program	B.Tech					
Semester	I AEI MEICE					
Course Type	Core					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits
	2			4	3	4
Chief Coordinator	Prof. B.V. S. N. Rao, Professor					
Course Faculty	y Mr. S. Devaraj, Assistant Professor, Mr. T. Mahesh Kumar, Assistant Professor					

I. COURSE OVERVIEW:

One of the best ways to communicate one's ideas is through some form of picture or drawing. This is especially true for the engineer. An engineering drawing course focuses on usage of drawing instruments, lettering, construction of geometric shapes, etc. Students study use of dimensioning, shapes and angles or views of such drawings. Dimensions feature prominently, with focus on interpretation, importance and accurate reflection of dimensions in an engineering drawing. Other areas of study in this course may include projected views, pictorial projections and development of surfaces. This course also gives basic concepts for studying machine drawing, building drawing, circuit drawings etc.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS002	Ι	Linear Algebra and Differential Equations	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Engineering Drawing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments		MOOCs			
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos			
×	✗ Open Ended Experiments									

V. EVALUATION METHODOLOGY:

The SEE is conducted for 70 marks of 3 hours duration. The question paper pattern is as follows: two full questions with 'either' 'or' choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question. All the drawing related courses are evaluated in line with laboratory courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks in each semester.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Term paper, Seminars
PO 4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Lecture, Assignments.
PSO 2	Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	-	-
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	-	-
	3 = High; 2 = Medium; 1 = Low		

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:

Inc cou	The should enable the students to:
т	Understand the basic principles of engineering drawing and construction of curves used in
1	engineering field
II	Apply the knowledge of interpretation of projection in different quadrants.
III	Understand the projections of solids, when it is inclined to both planes simultaneously
IV	Convert the pictorial views into orthographic view and vice versa.
V	Create intricate details of components through sections and develop its surfaces.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student	PO's	Strength of
Code		will have the ability to:	Mapped	Mapping
AME001.01	CLO 1	Understand the BIS conventions of	PO 1	3
		engineering drawing with basic concepts,		
		ideas and methodology		
AME001.02	CLO 2	Recognize the need of single stroke lettering	PO 1	3
		in defining the components		
AME001.03	CLO 3	Understand the different line types according	PO 1	3
		to BIS standards to engineering drawings.		
AME001.04	CLO 4	Sketch the various types of polygons for	PO 2	2
		applying in solid modeling		
AME001.05	CLO 5	Discuss the various types of scales for	PO 2	2
		engineering application like maps, buildings,		
		bridges.		
AME001.06	CLO 6	Visualize parabolic and elliptical profiles in	PO 2	2
		buildings and bridges		
AME001.07	CLO 7	Visualize cycloidal and involute profiles in	PO 4	1
		developing new products like gears and other		
		engineering applications.		
AME001.08	CLO 8	Solve specific geometrical problems in plane	PO 4	1
		geometry involving points and lines.		
AME001.09	CLO 9	Understand the theory of projection in planes	PO 2	2
		located in various quadrants and apply in		
		manufacturing processes.		
AME001.10	CLO 10	Understand the orthographic projection	PO 2	2
		concepts in solid modeling and apply the		
		concepts in the areas of design.		
AME001.11	CLO 11	Apply the terminology of development of	PO 1	3
		surfaces in the area of chimneys and chutes.		
AME001.12	CLO 12	Visualize the components by isometric	PO 1	3
		projection by representing three dimensional		
		objects in two dimensions in technical and		
		engineering drawings.		
AME001.13	CLO 13	Interpret plumbing drawings typically found	PO 1	3
		in construction by using transformation of		
		projection.		
AME001.14	CLO 14	Convert the orthographic views into pictorial	PO 1, PO 2	3
		views by using transformation of projection.		
AME001.15	CLO 15	Convert the pictorial views into orthographic	PO 2	2
		views by using transformation of projection.		

^{3 =} High; 2 = Medium; 1 = Low

(CLOs)	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2	3												1		
CLO 3	3												1		
CLO 4		2													
CLO 5		2				1									
CLO 6		2													
CLO 7				1											
CLO 8				1											
CLO 9		2											1		
CLO 10		2											1		
CLO 11	3					1									
CLO 12	3														
CLO 13	3														
CLO 14	3	2											1		
CLO 15		2													

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1	SEE Exams	PO 1	Assignments	PO 2	Seminars	PO 2
Laboratory Practices	PO 2	Student Viva	-	Mini Project	-	Certification	-
Term Paper				Project			

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I FUNDAMENTALS OF ENGINEERING DRAWING, SCALES AND CURVES

Introduction to engineering drawing: Drawing instruments and accessories, types of line, lettering

practice and rules of dimensioning, geometrical constructions, basic geometrical shapes; Scales: Types of scales, units of length and their conversion, construction of scales, plain scale, diagonal scale, vernier scale; Curves used in engineering practice and their constructions; Conic sections, construction of ellipse parabola and hyperbola, special curves, construction of cycloid, epicycloids, hypocycloid and involutes.

UNIT-II ORTHOGRAPHIC PROJECTION, PROJECTION OF PLANES

Orthographic projection: Principles of orthographic projections, conventions, first and third angle projections, projection of points, projection of lines, lines inclined to single plane, lines inclined to both the planes, true lengths and traces; Projection of planes: Projection of regular planes, planes inclined to one plane, planes inclined to both planes, projection of planes by auxiliary plane projection method.

UNIT-III PROJECTION OF SOLIDS

Projection of solids: Projections of regular solid, prisms, cylinders, pyramids, cones. Solids inclined to one plane, solids inclined to both planes, projection of solid by auxiliary Page | 5 plane projection method.

UNIT-IV DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS

Development of surfaces: Development of lateral surface of right regular solids, prisms, cylinders, pyramids and cones; Isometric projections: Principle of isometric projection, isometric scale, isometric projections and isometric views, isometric projections of planes, prisms, cylinders, pyramids, and cones.

UNIT-V TRANSFORMATION OF PROJECTIONS

Transformation of projections: Conversion of isometric views to orthographic views and conversion of orthographic views to isometric views.

Text Books:

1. N. D. Bhatt, "Engineering Drawing", Charotar Publications, 49thEdition, 2012.

2. C. M. Agrawal, Basant Agrawal, "Engineering Drawing", Tata McGraw Hill, 2ndEdition, 2013.

Reference Books:

1. K.Venugopal, "Engineering Drawing and Graphics", New Age Publications, 2ndEdition, 2010.

2. K. C. John, "Engineering Drawing", PHI Learning Private Limited", 2nd Edition, 2009.

3. Dhananjay. A. Johle, "Engineering Drawing", Tata McGraw Hill, 1st Edition, 2008.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Principles of engineering drawing – various drawing instruments and their uses. (General exercises).	CLO 1	T1:1.1
2	Conventions in Drawing-Lettering -BIS.	CLO 2	T1:1.1
3	Geometrical constructions.	CLO 2	T1: 2.1
4	Construction of various scales for engineering use-Plain and diagonal.	CLO 2	T1:2.2 R1: 2.2.3
5	Construction of various scales for engineering use-Vernier scales	CLO 1	T1: 2.3
6	Construction of various curvesgeneral method.	CLO 2	T1: 3.1
7	Construction of various curves- ellipse, parabola and hyperbola.	CLO1	T1:3.3
8	Construction of various curves cycloid, epicycloids, hypocycloid and involutes.	CLO 2	T1:3.4, R1: 4.1
9	Projection of points and lines inclined to single plane.	CLO 2	T1: 4.1
10	Projection of lines inclined to both planes.	CLO1	T1: 4.3
11	Projection of planes-simple position.	CLO 1	T1: 4.3.2
12	Projection of planes- inclined to a both planes.	CLO1	T1:4.3
13	Projection of solids inclined to single plane.	CLO 2	T1: 4.4
14	Projection of solids inclined to a both planes.	CLO 2	T1: 5.2
15	Projection of solids Auxiliary plane method.	CLO 2	T1: 5.2.3
16	Draw the development of surfaces.	CLO 1	T1: 6.1

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
17	Draw the isometric projections	CLO 2	T1: 8.1
18	Convert the pictorial views to orthographic views	CLO 2	T1:8.1.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Increase ability to communicate with people.	Seminars	PO 1, PO 2,	PSO 1
2	Learn to take data and transform it into graphic drawings	Guest Lectures	PO4, PO 5	PSO 2
3	Students will become familiar with office practices and standards.	Assignments / Laboratory Practices	PO9, PO10	PSO 3

Prepared by:

Mr. S. Devaraj, Assistant Professor,

HOD, AE

II SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COM	COMPUTER PROGRAMMING								
Course Code	ACS00	ACS001								
Programme	B.Tech	B.Tech								
Semester	Ι	I CSE IT ECE EEE								
	п	AE CE ME								
Course Type	Founda	Foundation								
Regulation	IARE -	IARE - R16								
		Theory Practical								
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits				
	3		1	4	4	2				
Chief Coordinator	Dr. K S	Sriniv	asa Reddy, Profe	ssor & HOD, I	Т					
Course Faculty	Dr. G F Dr. J Si Dr. K S Ms. B I Ms. B I Ms. G G	Dr. K Srinivasa Reddy, Professor & HOD, IT Ms N Jayanthi Dr. G Ramu Dr. J Sirisha Devi Dr. K Suvarchala Ms. B Rekha Ms. B Padmaja Ms. G Geetha Reddy Ms. K Laxmi Narayanamma								

I. COURSE OVERVIEW:

The course covers the basics of programming and demonstrates fundamental programming techniques, customs and terms including the most common library functions and the usage of the preprocessor. This course helps the students in gaining the knowledge to write simple C language applications, mathematical and engineering problems. This course helps to undertake future courses that assume this programming language as a background in computer programming. Topics include variables, data types, functions, control structures, pointers, strings, arrays and dynamic allocation principles. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineering areas.

II. COURSE PRE-REQUISITES:

Level	Course Code Semester		Prerequisites
-	-	-	Basic Mathematics and Logical Thinking

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Computer Programming	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs		
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos		
×	✗ Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into fiveunits and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		- Total Marks		
Type of Assessment	CIE Exam			
CIA Marks	25	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of	3	Assignments
101	mathematics, science, engineeringfundamentals, and an	5	rissignments
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	Assignments
	literature, and analyze complexengineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Design/development of solutions: Design solutions for	2	Seminars, Viva
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 4	Conduct investigations of complex problems: Use research-	1	5 minutes video
	based knowledge and researchmethods including design of		
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Projects
PSO 2	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	3	Lectures, Assignments
PSO 3	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats.	1	5 minutes video

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course	The course should enable the students to:						
Ι	Learn adequate knowledge by problem solving techniques.						
II	Understand programming skills using the fundamentals and basics of C Language.						
III	Improve problem solving skills using arrays, strings, and functions.						
IV	Understand the dynamics of memory by pointers.						
V	Study files creation process with access permissions						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
ACS001.01	CLO 1	Identify and understand the working of key	PO 1, PO 4	2
		components of a computer system.		
ACS001.02	CLO 2	Analyze a given problem and develop an	PO 2, PO 3	3
		algorithm to solve the problem.		
ACS001.03	CLO 3	Describe the fundamental programming	PO 2, PO 4	2
		constructs and articulate how they are used to		
		develop a program with a desired runtime		
		execution flow.		
ACS001.04	CLO 4	Gain knowledge to identify appropriate C	PO 1, PO 3	3
		language constructs to write basic programs.		
ACS001.05	CLO 5	Identify the right data representation formats	PO 2,PO 3	3
		based on the requirements of the problem.		
ACS001.06	CLO 6	Describe the operators, their precedence and	PO 1, PO 4	2
		associativity while evaluating expressions in		
		program statements		
ACS001.07	CLO 7	Understand branching statements, loop	PO 1,PO 4	2
		statements and use them in problem solving.		
ACS001.08	CLO 8	Learn homogenous derived data types and use	PO 2, PO 3	3
		them to solve statistical problems.		
ACS001.09	CLO 9	Understand procedural oriented programming	PO 2	3
		using functions.		
ACS001.10	CLO 10	Understand how recursion works and write	PO 1, PO 2	3
		programs using recursion to solve problems.		
ACS001.11	CLO 11	Differentiate call by value and call by	PO 2	3
		reference parameter passing mechanisms.		
ACS001.12	CLO 12	Understand pointers conceptually and apply	PO 1	3
		them in C programs.		
ACS001.13	CLO 13	Distinguish homogenous and heterogeneous	PO 3	2
		data types and apply them in solving data		
		processing applications.		
ACS001.14	CLO 14		PO 1, PO 3	3
		handling data storage and apply it for solving		
		problems.		
ACS001.15	CLO 15	Differentiate text files and binary files and	PO 2	3
		write the simple C programs using file		
		handling functions. Searching, Sorting.		
ACS001.16	CLO 16	Apply the concepts to solve real-time	PO 2	3
		applications using the features of C language.		
ACS001.17	CLO 17		PO 1, PO 4	2
		employability and to succeed in national and		
		international level competitive examinations.		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs					Prog	ram O	utcom	es PO	S					Program Specific Outcomes PSOs		
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CLO 1	3			1										3		
CLO 2		3	2										2		1	
CLO 3		3		1									2			
CLO 4	3			1									2			
CLO 5		3	2										2	3		
CLO 6	3			1											1	
CLO 7	3			1										3		
CLO 8		3	2										2			
CLO 9		3												3		
CLO 10	3	3											2		1	
CLO 11		3												3		
CLO 12	3												2	3		
CLO 13			2										2			
CLO 14	3		2											3	1	
CLO 15		3												3		
CLO 16		3												3		
CLO 17	3			1									2			

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO 3, PO 4	SEE Exams	PO 1, PO2, PO 3, PO 4	Assignments	PO 2	Seminars	PO 3
Laboratory Practices	PO 1	Student Viva	PO 3	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	INTRODUCTION
and running p of C program constants, st arithmetic, re conditional	to computers: Computer systems, computing environments, computer languages, creating programs, algorithms, flowcharts; Introduction to C language: History of C, basic structure ms, process of compiling and running a C program, C tokens, keywords, identifiers, rings, special symbols, variables, data types; Operators and expressions: Operators, lational and logical, assignment operators, increment and decrement operators, bitwise and operators, special operators, operator precedence and associativity, evaluation of type conversions in expressions, formatted input and output.
UNIT-II	CONTROL STRUCTURES
do while loop arrays, declar	tures: Decision statements; if and switch statement; Loop control statements: while, for and ps, jump statements, break, continue, goto statements; Arrays: Concepts, one dimensional ation and initialization of one dimensional arrays, two dimensional arrays, initialization and alti dimensional arrays; Strings concepts: String handling functions, array of strings.
UNIT-III	ARRAYS AND FUNCTIONS
functions, in	leed for user defined functions, function declaration, function prototype, category of ter function communication, function calls, parameter passing mechanisms, recursion, s to functions, passing strings to functions, storage classes, preprocessor directives.
	inter basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, arrays, pointers as functions arguments, functions returning pointers.
UNIT-IV	STRUCTURES, UNIONS AND POINTERS
	d unions: Structure definition, initialization, accessing structures, nested structures, arrays structures and functions, passing structures through pointers, self referential structures,
	elds, typedef, enumerations; Dynamic memory allocation: Basic concepts, library functions.
UNIT-V	FILE HANDLING AND BASICALGORITHMS
	s, basic file operations, file types, file opening modes, file input and output functions, file ns, file positioning functions, command line arguments.
Text Books:	
 Stephen (B. A. Fo Edition, 2 	G. Kochan, "Programming in C", Addison-Wesley Professional, 4 th Edition, 2014. rouzan, R. F. Gillberg, "C Programming and Data Structures", Cengage Learning, India, 3 rd 2014.
Reference B	ooks:
Edition, 1	
	t Kanetkar, "Exploring C", BPB Publishers, 2 nd Edition, 2003.
-	rusamy, "Programming in ANSI C", Mc Graw Hill Education, 6 th Edition, 2012.
	ferbert, "C: The Complete Reference", Tata Mc Graw Hill Education, 4 th Edition, 2014.
6. Dey Prad	hkar, "Programming with C", Universities Press, 2 nd Edition, 2012. leep, Manas Ghosh, "Computer Fundamentals and Programming in C", Oxford University
Press, 2 nd	Edition, 2006.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1 – 2	Introduction to Computers: computer systems, computing environments.	CLO 1	T2:1.1-1.2
3-4	Computer languages, creating and running programs, program development.	CLO 1	T2:2.1-2.2
5-6	Algorithms, flowcharts	CLO 2	T2:1.4-1.5
7 - 8	Introduction to C Language: background, C programs.	CLO 3	T2:2.1-2.2
9 - 10	Identifiers, data types, Input/output, variables, constants, Operators (arithmetic, relational, logical, bitwise etc).	CLO 3	T2: 2.3- 2.6,7
11 – 12	Expressions, precedence and associativity, expression evaluation, type conversions	CLO 6	T2:3.1-3.5
13 – 14	Statements - selection statements (making decisions) - if statement, switch statement.	CLO 7	T2: 5.2-5.3
15 – 16	Repetition statement (loops)-while, dowhile statements, for statements, loop examples	CLO 7	T2: 6.1-6.6
17 – 18	Other statements related to looping – break, continue, go to, simple C program examples.	CLO 7	T2: 6.7
19 – 20	Arrays- Concepts, using arrays in C, declaration and initialization of one dimensional array, C program example. Two dimensional arrays, initialization and accessing, multi dimensional arrays, C program example.	CLO 8	T2: 8.1- 8.3,8.7-8.8
21-22	Strings – Strings concepts: String handling functions, array of strings, C program examples.	CLO 8	T2: 11.1- 11.5
23 24	Functions- Need for user defined functions, function declaration, function prototype. Category of functions, inter function communication, function calls, parameter passing mechanisms.	CLO 9	T2: 4.1-4.5
25	Recursion, passing arrays to functions, passing strings to functions, Storage classes and preprocessor commands.	CLO 10	T1:7 T2:6.9 T2:G.1
26-27	Pointer basics, pointer arithmetic, pointers to pointers, generic pointers. Pointer applications-Arrays and pointers, pointer arithmetic and arrays, passing an array to a function.	CLO 12	T1:1.0
28 – 29	Array of pointers, pointers and arrays, pointers as functions arguments, functions returning pointers	CLO 12	T2:10.3-10.5
30 - 31	Structures – declaration, initialization, accessing structures, operations on structures.	CLO 13	T1:8
32 - 33	Complex structures, structures and functions, passing structures through pointers, self-referential structures.	CLO 13	T2: 12.3- 12.4
34 - 35	Unions, C programming examples, Bit fields, typedef, enumerations.	CLO 13	T2:12.4 T2:12.1- 12.2
36 38	Dynamic memory allocation: Basic concepts, library functions	CLO 13	T2:2.1-2.2
39 - 40	Files: Concept of a file, streams, types of files and file opening modes.	CLO 14	R3:12.1- 12.3
41-42	File input/output functions (standard input/output functions for files).	CLO 14	R3:12.4

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
43 - 44	File status functions (error handling), positioning functions, C program examples.	CLO 15	R3:12.5
45	Command-line arguments.	CLO 15	R3:12.7

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Updating latest version and new features of the C language	Laboratory Sessions	PO5	PSO2
2	Familiarizing the role of C language in developing system level programs.	Assignments / Industrial visits	PO1,PO2	PSO2
3	Familiarizing different areas where C language can be used.	Seminars	PO12	PSO3
4	Solving different problems and Practicing various debugging strategies to become a good programmer	Extra Lab Sessions, Participating in Coding contests	PO2	PSO3

Prepared by: N Jayanthi, Assistant Professor

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COMI	COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS					
Course Code	AHS00	AHS003					
Programme	B.Tech	1					
	Ι	CSE	E IT ECE EEE				
Semester	II	AE	ME CE				
Course Type	Founda	Foundation					
Regulation	IARE -	IARE - R16					
		Theory Practical					
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	-	-	
Chief Coordinator	Ms. V	Ms. V Subba Laxmi Assistant Professor					
Course Faculty	Ms. L I Mr. Ch Ms. P I	Dr. S Jagadha, Professor Ms. L Indira, Assistant Professor Mr. Ch Somashekar, Assistant Professor Ms. P Rajani, Assistant Professor Ms. B Praveena, Assistant Professor					

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes types of interpolation, curve fitting, numerical solutions of ordinary differential equations, multiple integrals, vector calculus and special functions. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Differentiation, integration and properties of vectors

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Computational Mathematics and Integral calculus	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	T OTAL IVIALES
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an	3	Presentation on real-world
	engineering specialization to the solution of complex engineering problems.		problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar
PO 4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Term Paper

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills : Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products.	1	Seminar
PSO 2	Problem-solving Skills : Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	-	-
PSO 3	Practical implementation and testing skills : Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies		
PSO 4	Successful Career and Entrepreneurship : To build the nation, by imparting technological inputs and managerial skills to become Technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:						
Ι	Enrich the knowledge of solving algebraic, transcendental equations by numerical methods.						
II	Apply multiple integration to evaluate mass, area and volume of the plane.						
III	Analyze gradient, divergence and curl to evaluate the integration over a vector field.						
IV	Understand the Bessel's equation to solve them under special conditions with the help of series solutions.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS003.01	CLO 1	Solve the algebraic and transcendental equations using bisection method, method of false position and Newton-Raphson method.	PO 1	3
AHS003.02	CLO 2	Apply numerical methods to interpolate the functions of values for equal intervals using finite differences.	PO2	3
AHS003.03	CLO 3	Understand the Newton-Raphson method to the real-world problem for a finite barrier quantum well.	PO 4	1
AHS003.04	CLO 4	Evaluate the functional value by using Lagrange's interpolation formula for unequal intervals.	PO2	2
AHS003.05	CLO 5	Understand the Lagrange's interpolation in real- world problem for neural network learning.	PO 4	1
AHS003.06	CLO 6	Apply method of least squares to fit linear and non linear curves.	PO1, PO 2	2
AHS003.07	CLO 7	Solve differential equation using single step method- Taylor's series.	PO 1	3
AHS003.08	CLO 8	Solve differential equation using multi step methods- Euler's, Modified Euler's and Runge Kutta methods.	PO 2	2
AHS003.09	CLO 9	Understand the multistep methods in real-worl problem for real time Aircraft dynamics.	PO 4	1
AHS003.10	CLO 10	Understand the Runge-Kutta method in real- world problem for embedding the sensor signals into the iterative computation.	PO 4	1
AHS003.11	CLO 11	Evaluate double integral and triple integrals.	PO 1	2
AHS003.12	CLO 12	Utilize the concept of change order of integration to evaluate double integrals.	PO 1,PO2	2
AHS003.13	CLO 13	Determine the area and volume of a given curves using double and triple integration.	PO 2	3
AHS003.14	CLO 14	Understand transformation of co-ordinate system from plane to plane.	PO 1	3
AHS003.15	CLO 15	Analyze scalar and vector fields and compute the gradient, divergence and curl.	PO 2	3
AHS003.16	CLO 16	Understand integration of vector function.	PO 1	2
AHS003.17	CLO 17	Evaluate line, surface and volume integral of vectors.	PO 1	3
AHS003.18	CLO 18	Use Vector integral theorems to facilitate vector integration.	PO 2	2
AHS003.19	CLO 19	Analyze the concept of vector calculus in real- world problem for fluid dynamics.	PO 4	1
AHS003.20	CLO 20	Solve the Differential Equations by series solutions.	PO 1	3
AHS003.21	CLO 21	Understand Gamma function to evaluate improper integrals.	PO 1	2
AHS003.22	CLO 22	Analyze Bessel's function and study its properties	PO 1	3
AHS003.23	CLO 23	Analyze Bessel's function as a Solution to Schrödinger equation in a cylindrical function of the second kind.	PO 4	1
AHS003.24	CLO 24	Understand gamma function to find application diverse areas as quantum physics.	PO 4	1
AHS003.25	CLO 25	Possess the knowledge and skills for employability and to succeed in national and	PO 4	1
		international level competitive examinations. : 2 = Medium: 1 = Low		

3 = High; 2 = Medium; 1 = Low

CLOs				Р	rogra	am O	utcon	nes (P	Os)				Program Specific Outcomes (PSOs)			
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2		
CLO 1	3												1			
CLO 2		3											1			
CLO 3				1									1			
CLO 4		2														
CLO 5				1												
CLO 6	2	2														
CLO 7	3															
CLO 8	2															
CLO 9				1									1			
CLO 10				1									1			
CLO 11	2															
CLO 12	2	2														
CLO 13		3														
CLO 14	3												1			
CLO 15		3														
CLO 16	2															
CLO 17	3												1			
CLO 18		2											1			
CLO 19				1									1			
CLO 20	3												1			
CLO 21		2														
CLO 22	3															
CLO 23				1												
CLO 24				1												
CLO 25				1												

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CIE Exams	PO 1 PO 2 PO 4	SEE Exams	PO 1 PO 2 PO 4	Assignments	-	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XI. ASSESSMENT METHODOLOGIES – DIRECT

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	ROOT FINDING TECHNIQUES AND INTERPOLATION
of False pos backward dif Newton's bac	techniques: Solving algebraic and transcendental equations by Bisection method, Method sition, Newton-Raphson method; Interpolation: Finite differences, forward differences, fferences and central differences; Symbolic relations; Newton's forward interpolation, ckward interpolation; Gauss forward central difference formula, Gauss backward central rmula; Interpolation of unequal intervals: Lagrange,'s interpolation.
	CURVE FITTING AND NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
Taylor's serie	ght line; Second degree curves; Exponential curve, power curve by method of least squares; es method; Step by step methods: Euler's method, modified Euler's method and Runge- l for first order differential equations.
UNIT -III	MULTIPLE INTEGRALS
	triple integrals; Change of order of integration. Transformation of coordinate system; rea of a region using double integration and volume of a region using triple integration.
UNIT -IV	VECTOR CALCULUS
irrotational ve integral and v	ector point functions; Gradient, divergence, curl and their related properties; Solenoidal and ector point functions; Scalar potential function; Laplacian operator; Line integral, surface volume integral; Vector integral theorems: Green's theorem in a plane, Stoke's theorem and ence theorem without proofs.
UNIT -V	SPECIAL FUNCTIONS
equations; Se differential	tion, properties of gamma function; Ordinary point and regular singular point of differential eries solutions to differential equations around zero, Frobenius method about zero; Bessel's equation: Bessel functions properties, recurrence relations, orthogonality, generating onometric expansions involving Bessel functions.
Text Books:	
2014.	eyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9 th Edition, val, "Higher Engineering Mathematics", Khanna Publishers, 43 rd Edition, 2012.
Reference Be	ooks:
2. R K Jain 2016.	rengar, B.Krishna Gandhi, "Engineering mathematics-I", S. Chand & Co., 6 th Edition, 2014. , S R K Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition,
	try, "Introduction Methods of Numerical Analysis", Prentice-Hall of India Private Limited, on, 2012.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Define Algebraic and Transcendental equations	CLO 1	T1:22.5 R1:2.3
2	Explain Bisection method to find the root of an equation.	CLO 1	T1:22.5 R1:2.4
3	Explain Method of False Position to to find root an equation.	CLO 1	T1:22.6 R1:2.6
4	Explain Newton-Raphson method to find root of an equation.	CLO 3	T1:22.7
5	Define interpolation of the given data.	CLO 2	R1:4.4 T1:22.7
6	Explain symbolic relations the between the operators.	CLO 2	R1:4.10 T1:22.8
7	Define Newton's forward interpolation formula for evenly spaced	CLO 2	R1:4.15 T1:22.9
8	intervals Define Newton's backward interpolation formula for evenly	CLO 2	R1:5.4 T1:22.9
9	spaced intervals. Define Gauss forward interpolation formula for evenly spaced	CLO 2	R1:5.8 T1:23.10
10	intervals Define Gauss backward interpolation formula for evenly spaced	CLO 2	R1:6.8 T1:23.10
11	intervals. Demonstrate Lagrange's formula for unequal intervals.	CLO 5	R1:6.13 T1:23.9
12	Describe the best fit of a straight line by method of least squares.	CLO 6	R1:7.5 T1:23.10
13	Describe the best fit of a second degree parabola by method of least squares	CLO 6	R1:7.5 T1:23.10 R1:8.1
14	Describe the best fit of an exponential curve by method of least squares	CLO 6	T1:23.1 R1:9.2
15	Describe the best fit of a power curve by method of least squares	CLO 6	T1:23.1 R1:9.4
16	Solve the ordinary differential equation by Taylors series method.	CLO 6	T1:23.1 R1:9.9
17	Solve the ordinary differential equation by Euler's Method- Euler's modified method.	CLO 8	T1:23.1 R1:9.10
18	Solve the ordinary differential equation by Runge-Kutta Method.	CLO 8	T2:27.5 R1:10.2
19	Evaluate double and triple integrals.	CLO 8	T2:27.7 R1:11.3
20	Use the Change of order of integration cartesian and polar form.	CLO 12	T2:27.8 R1:11.6
21	Explain Transformation of co-ordinate system	CLO 11	T2:27.12
22	Use double integration for finding the area.	CLO 14	R1:11.7 T2:27.12
23	Use triple integration for finding the volume.	CLO 14	R1:11.8 T2:27.12
24	Define vector calculus and vector fields and their properties	CLO 19	R1:11.9 T2:27.12
25	Determine Gradient, divergent and curl of vector fields.	CLO 19	R1:11.10 T2:27.14 R1:12.3
26	Solve line integral along smooth path and find work done.	CLO 17	T2:27.1

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
			R1:12.7
27	Evaluate surface integral.	CLO 17	T2:27.17 R1:12.15
28	Use Green's theorem to evaluate line integrals along simple closed contours on the plane.	CLO 17	T2:27.18 R1:12.19
29	Use Stokes' theorem to give a physical interpretation of the curl of a vector field.	CLO 17	T2:27.19 R2:14.4
30	Use the divergence theorem to give a physical interpretation of the divergence of a vector field.	CLO 17	T2:27.19 R2:14.5
31	Explain gamma function s for improper integrals and gamma properties.	CLO 21	T2:27.19 R2:14.5
32	Define Ordinary and regular point of a differential equation.	CLO 23	T2:27.20 R2:14.5
33	Determine the solution of ordinary differential equations in series form.	CLO 23	T2:27.20 R2:14.5
34	Explain Frobenius Method about zero.	CLO 20	T2:27.19 R2:14.5
35	Define Bessel's Differential equation.	CLO 22	T2:27.19 R2:14.5
36-37	Explain Bessel's differential functions and properties.	CLO 22	T2:27.19 R2:14.5
38-39	Explain Recurrence relations for Bessels function.	CLO 23	T2:27.19 R2:14.5
40-42	Explain Orthogonality of Bessel's function .	CLO 23	T2:27.20 R2:14.5
43-44	Explain Generating function of Bessel's function.	CLO 23	T2:27.20 R2:14.5
45	Explain trigonometric expansions of Bessels function.	CLO 23	T2:27.19 R2:14.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Newton Raphson method, Lagranges interpolation, method of least square and Runge-kutta method	Seminars / NPTEL	PO 2	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 4	PSO 1

Prepared by: Mr. V Subba Laxmi, Assistant Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	MODE	MODERN PHYSICS						
Course Code	AHS00	AHS008						
Programme	B.Tech							
Semester	II	AE	ME CE					
Course Type	Founda	Foundation						
Regulation	IARE -	IARE - R16						
		Theory Practical						
			e e					
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits		
Course Structure	Lectu 3	ires	-	Credits 4	Laboratory 3	Credits 2		
Course Structure Chief Coordinator	3		Tutorials	4	3			

I. COURSE OVERVIEW:

The course matter is divided into five units covering duly-recognized areas of theory and study. This course develops abstract and critical reasoning by studying mathematical and logical proofs and assumptions as applied in basic physics and to make connections between physics and other branches of sciences and technology. The topics covered include crystallography, X-ray diffraction, defects in crystals, lasers, sensors, fiber optics, interference and diffraction. The course helps students to gain knowledge of basic principles and appreciate the diverse applications in technological fields in respective branches and also in their lives.

II. COURSE PRE-REQUISITES:

Level	Course Code Semester		Prerequisites
-	-	-	Basic principles of physics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Modern Physics	70 Marks	30 Marks	100	

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experime	nts					

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for	CIA
---------------------	-------------	-----

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs)	Strength	Proficiency assessed by
Engineering knowledge: Apply the knowledge of	3	Presentation on
		real-world problems
engineering specialization to the solution of complex		
engineering problems.		
Problem analysis: Identify, formulate, review research	2	Seminar
literature, and analyze complex engineering problems		
reaching substantiated conclusions using first principles		
of mathematics, natural sciences, and engineering		
sciences		
Conduct investigations of complex problems: Use	1	Term Paper
research-based knowledge and research methods		
including design of experiments, analysis and		
interpretation of data, and synthesis of the information to		
provide valid conclusions.		
	 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to 	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.3Problem analysis: Identify, formulate, review research

3 = **High; 2** = **Medium; 1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Level	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic	1	Seminar
	and challenging environment for design and development of new products.		
PSO 2	Problem-solving Skills : Imparted through simulation language skills and general purpose CAE packages to solve	-	-
1.00 -	practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.		
	Practical implementation and testing skills: Providing	-	-
PSO 3	different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies.		
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and	-	-
	develop systems and subsystems of aerospace and allied systems and become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:						
I Develop strong fundamentals of crystal structures and properties.						
II	Meliorate the knowledge of theoretical and technological aspects of lasers.					
III	Correlate principles with applications of the x-ray diffraction and defects in crystals.					
IV	Enrich knowledge in modern engineering principles of interference and diffraction.					

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
AHS008.01 CLO 1		Recall the basic principles of physics and apply these concepts of physics in solving the real-time	PO 1 , PO 2	3	
AHS008.02	CLO 2	problems. Acquire knowledge of basic terms related to	PO 1, PO 4	3	
A115008.02	CLO 2	crystals, crystal systems, Bravais lattices and Miller Indices.	101,104	5	
AHS008.03	CLO 3	Discuss in detail different crystal structures and calculate their packing factors.	PO 1 , PO 4	3	
AHS008.04	CLO 4	Describe different X-ray diffraction in research and development for the study of internal structures of materials.	PO 1 , PO 2	2	
AHS008.05	CLO 5	Identify various types of defects in crystals and their effect on structure sensitive properties.	PO 1 , PO 2	2	
AHS008.06	CLO 6	Understand the basic principles involved in the production of Laser light and also real-time applications of lasers.	PO 1 , PO 2	2	
AHS008.07	CLO 7	Explain the principle involved in working of different types of laser systems.	PO 1 , PO 4	1	
AHS008.08	CLO 8	Analyze basic laws of physics to correlate the mechanism of sensors in day to day life. Principle of sensor along with their applications.	PO 2 , PO 4	1	
AHS008.09	CLO 9	Understand the importance of various sensors in real-time applications like measurement of pressure in aeronautics, detecting submarines in acoustics.	PO 2 , PO 4	2	
AHS008.10	CLO 10	Recollect basic principle, construction, types and attenuation of optical fibers.	PO 1 , PO 2	2	
AHS008.11	CLO 11	Apply properties of optical fibers in various real- time applications like measurement of pressure, temperature, displacement etc.,	PO 1 , PO 4	3	
AHS008.12	CLO 12	Understand the importance of optical fibers in real-time communication system.	PO 1 , PO 2	3	
AHS008.13	CLO 13	Interpret phenomenon of interference in thin films using Newton's rings experiment.	PO 1 , PO 4	3	
AHS008.14	CLO 14	Identify difference in diffraction phenomenon due to single slit and N-slits.	PO 2 , PO 4	1	
AHS008.15	CLO 15	Apply different laws of radiation to understand the phenomenon behind production of light.	PO 1 , PO 4	2	

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learnin		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
g Outcom es (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3	2											1			
CLO 2	2			2									1			
CLO 3	3			1									1			
CLO 4	1	3														
CLO 5	3	2														
CLO 6	3	2											1			
CLO 7	2			1									1			
CLO 8		2		1												
CLO 9		1		1									1			
CLO 10	3	2											1			
CLO 11	2			1												
CLO 12	3	2											1			
CLO 13	2			1												
CLO 14		1		2									1			
CLO 15	3	T • 1		2												

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2	SEE Exams	PO 1,PO 4	Assignments	PO 4	Seminars	PO 2
Laboratory Practices	PO 1,PO 2	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

•	Early Semester Feedback	~	End Semester OBE Feedback
2	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

SILLADUS	
UNIT-I CRYSTALLOGRAPHY AND CRYSTAL STRUCTURES	
Crystallography and crystal structures: Space lattice, unit cell, lattice parameters, crystal s lattices, directions and planes in crystals, Miller indices, interplanar spacing of orthogonal crystal systems, atomic radius, coordination number and packing factor of S NaCl and diamond structures.	-
UNIT-II X-RAY DIFFRACTION AND DEFECTS IN CRYSTALS	
X-ray diffraction: Bragg's law, Laue method, powder method and applications; Defects in Concepts of point defects, vacancies, substitutional, interstitial, frenkel, schottky defects, line defects and Burger's vector.	crystals:
UNIT-III LASERS AND SENSORS	
Lasers: Characteristics of lasers, spontaneous and stimulated emission of radiation, m population inversion, lasing action, ruby laser, semiconductor diode laser and applications	
Sensors: Introduction, basic principles, sensor materials and applications: principle of pr acoustic and thermal sensing.	essure, optical,
UNIT-IV FIBER OPTICS	
Fiber optics: Principle and construction of an optical fiber, acceptance angle, numerical ap optical fibers (Single mode, multimode, step index, graded index), attenuation in application of optical fibers and optical fiber communication system with block diagram.	
UNIT-V INTERFERENCE AND DIFFRACTION	
Interference: Phase difference, path difference, coherence, conditions for constructive interference, interference in thin films due to reflected light, Newton rings experime Introduction, differences between interference and diffraction, types of diffraction, Fraunhofer diffraction due to single slit, N-slits, diffraction grating experime	nt. Diffraction:
Text Books:	
 V. Rajendran, "Engineering Physics", Tata Mc Graw Hill Book Publishers, 1st Edition, Dr. K. Vijaya Kumar, Dr. S. Chandralingam, "Modern Engineering Physics", S. Chand & Co., New Delhi, 1st Edition, 2010. 	
Reference Books:	
 P. K. Palanisamy, "Engineering Physics", Scitech Publishers, 4th Edition, 2014. R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Edition, A. J. Dekker, "Solid State Physics", Macmillan India ltd, 1st Edition, 2000. Hitendra K. Malik, A. K. Singh, "Engineering Physics", Mc Graw Hill Education, 1st Ed	

XIV. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Acquire knowledge of basic terms related to crystal structures.	CLO 2	T1:13.5 R1:1.3
2	Discuss different crystal systems.	CLO 2	T1:13.5 R1:1.3
3	Identify and sketch various planes in the crystal using the	CLO 3	T1:13.5 R1:1.3

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	Miller indices concept.		
4	Derive and calculate the distance between two adjacent parallel planes.	CLO 3	T1:147 R1:3.4
5	Determine co-ordination Number and packing Factor of SC structure.	CLO 3	T1:15.7 R1:4.0
6	Determine co-ordination Number and packing Factor of BCC structure.	CLO 3	T1:16.8 R1:4.5
7	Determine co-ordination Number and packing Factor of FCC structure.	CLO 3	T1:169 R1:5.4
8	Determine co-ordination Number and packing Factor of DC structure.	CLO 3	T1:179 R1:5.8
9	Discuss in detail NaCl structure.	CLO 2	T1:18.10 R1:6.8
10	Analyze the concept of X-ray diffraction in crystals using Bragg's law.	CLO 4	T1:19.0 R1:6.13
11	Apply Bragg's law to Laue method.	CLO 4	T1:19.9 R1:7.5
12	Determine crystal structure using powder method and discuss its applications.	CLO 4	T1:23.1 0 R1:7.5
13	Illustrate point defects like vacancies, substitutional and interstitial defects.	CLO 5	T1:23.1 0 R1:8.1
14	Recall basics of Frenkel and Schottky defects.	CLO 5	T1:23.1 R1:9.2
15	Understand the concept of edge dislocation.	CLO 5	T1:231 R1:9.4
16	Understand the concept of screw dislocation	CLO 5	T1:23.1 R1:9.9
17	Find the magnitude of Burger's vector.	CLO 5	T1:23.1 R1:9.10
18	Apply Bragg's law for finding parameters related to crystal structures.	CLO 5	T2:27.5 R1:102
19 20	Review basic phenomena's of laser Acquire knowledge of basic terms related to lasers	CLO 6	T2:27.7 R1:11.3 T2:27.8
20 21	Explain the construction of ruby laser	CLO 6	R1:11.6 T2:27.12
21	Explain the working of Ruby laser	CLO 7	R1:11.7 T2:27.12
23	Explain the principle and working of semiconductor	CLO 7	R1:11.8 T2:27.2
24	diode laser and also Discuss the uses of lasers. Understand the basic principle in sensors.	CLO 8	R1:11.9 T2:27.12
25	Analyze different sensing materials.	CLO 8	R1:11.10 T2:27.14 P1:12.3
26	Recognize functioning of sensors in different fields.	CLO 8	R1:12.3 T2:27.1 R1:12.7
27	Recognize functioning of sensors in different fields.	CLO 9	T2:27.17 R1:12.15
28	Recall the principle of fiber optics.	CLO 10	T2:27.18 R1:12.19
29	Derive relation for acceptance angle.	CLO 10	T2:27.19 R2:14.4
30	Calculate numerical aperture.	CLO 10	T2:27.0 R2:14.5

31	Classify optical fibers based on modes.	CLO 11	T2:30.19 R2:14.5
32	Classify optical fibers based on the refractive index profile.	CLO 11	T2:30.0 R2:15.5
33-34	Identify losses in fibers.	CLO 11	T2:32.19 R2:16.5
35-37	Examine the application of fibers.	CLO 12	T2:32.20 R2:16.5
38	Understand optical fiber communication system.	CLO 12	T2:33.1 R2:16.6
39-41	Solve problems in optical fibers.	CLO 12	T2:34.1 R2:17.1
42-43	Recall the basic principle of interference.	CLO 13	T2:352 R2:172
44-45	Describe interference in thin films.	CLO 13	T2:36.1 R2:18.1
46-48	Demonstrate the formation of Newton rings.	CLO 13	T2:38.19 R2:16.5
49	Demonstrate the formation of Newton rings.	CLO 14	T2:39.19 R2:16.5
50-53	Understand the phenomenon of diffraction.	CLO 14	T2:40.19 R2:16.5
54-55	Examine Fraunhofer diffraction due to single slit	CLO 14	T2:41.9 R2:16.5
56-57	Examine Fraunhofer diffraction due to single slit	CLO 15	T2:42.19 R2:16.5
58-59	Examine Fraunhofer diffraction due to N slits.	CLO 15	T2:42.19 R2:16.5
60	Identify Diffraction grating experiment	CLO 15	T2:42.19 R2:16.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	Guest lecture	PO 2	PSO 1

Prepared by: Mr. A Chandra Prakash, Assistant Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENVIRON	ENVIRONMENTAL STUDIES					
Course Code	AHS009						
Programme	B.Tech						
Semester	II AE	CSE IT ECE	EEE ME C	E			
Course Type	Foundation						
Regulation	IARE - R16	IARE - R16					
		Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits		
	3	-	3	-	-		
Chief Coordinator	Ms. M Laks	hmi Prasanna, A	ssistant Profess	or			
Course Faculty	Ms. V Anith Mr. B Raju, Ms. M Prave Ms. M Mala Mr. G Mahe Ms. T Malli	Dr. C Mahendar, Professor Ms. V Anitha Rani, Associate Professor Mr. B Raju, Assistant Professor Ms. M Praveen, Assistant Professor Ms. M Malathi, Assistant Professor Mr. G Mahesh Kumar, Assistant Professor Ms. T Mallika, Assistant Professor Ms. M Swathi, Assistant Professor					

I. COURSE OVERVIEW:

Environmental study is interconnected interrelated and interdependent subject. Hence, it is multidisciplinary in nature. The present course is framed by expert committee of UGC under the direction of honorable supreme court to be as a core module syllabus for all branches of higher education and to be implemented in all universities over India. The course is designed to create environmental awareness and consciousness among the present generation to become environmental responsible citizens. The course description is multidisciplinary nature of environmental studies, natural resources Renewable and non-renewable resources Ecosystems Biodiversity and its conservation Environmental pollution Social issues and the environment Human population and the environment Pollution control acts and field work. The course is divided into five chapters for convenience of academic teaching followed by field visits.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Basic Principles of Environmental Studies

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Environmental Studies	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks	
Type of Assessment	CIE Exam	i otai marks	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

The AAT chosen for this course is given in section XI.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an	2	Seminar
	engineering specialization to the solution of complex		
	engineering problems.		
PO 3	Design/development of solutions: Design solutions for	2	Seminar
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply appropriate	1	Real-time
	techniques, resources, and modern engineering and IT tools		applications
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		
PO 7	Environment and sustainability: Understand the impact of	1	Real-time
	the professional engineering solutions in societal and		applications
	environmental contexts, and demonstrate the knowledge of,		
	and need for sustainable development.		
	2 - Uight 2 - Modiumt 1 - Low		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products.	1	Seminar
PSO 2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	-	-
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats.	-	-

VIII. COURSE OBJECTIVES (COs):

The course sl	nould enable the students to:
Ι	Analyze the interrelationship between living organism and environment
II	Understand the importance of environment by assessing its impact on the human world
III	Enrich the knowledge on themes of biodiversity, natural resources, pollution control and waste management
IV	Understand the constitutional protection given for environment

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS009.01	CLO 1	Understand and realize the importance of multi-disciplinary nature of the environment in day to day life	PO 1, PO 3	2
AHS009.02	CLO 2	Describe various types of ecosystems its components and inter-relationship between man and environment	PO 1, PO 3	2
AHS009.03	CLO 3	Examine how pollutants move through various levels in an ecosystem in our daily life	PO 1, PO 3, PO 7	2
AHS009.04	CLO 4	Explain the pathways of relevant chemical elements through the components of the biosphere in real world applications	PO 1, PO 3, PO 7	2
AHS009.05	CLO 5	Understand the relevance and importance of the natural resources in the sustenance of life on earth and living standard.	PO 1, PO 3, PO 5, PO 7	2
AHS009.06	CLO 6	Develop an understanding of the natural resources problems and ethical issues facing humans and the environment	PO 1, PO 3, PO 7	2
AHS009.07	CLO 7	Correlate the exploitation and utilization of conventional and non-conventional resources.	PO 1, PO 3, PO 5,PO 7	2
AHS009.08	CLO 8	Demonstrate the level of chemical usage in agricultural development and its impact in our daily life	PO 1, PO 5, PO 7	2
AHS009.09	CLO 9	Understand the concept of growing energy needs in the world in terms of consumption of energy	PO 1, PO 7	2
AHS009.10	CLO 10	Establish knowledge and existence of endemic, extinct, endangered and threatened species, types and values of biodiversity	PO 1, PO 5, PO 7	2
AHS009.11	CLO 11	Describe our country as mega biodiversity nation in terms of hotspots	PO 1, PO 7	2
AHS009.12	CLO 12	Explain on threats and innovative methods for conservation of biodiversity.	PO 1, PO 3, PO 7	2
AHS009.13	CLO 13	Establish a foundation on different pollutants and pollutions in the environment.	PO 1, PO 3, PO 5, PO 7	2
AHS009.14	CLO 14	Ability to use methods, and strategies to investigate and interpret the pollution problems	PO 3, PO 5, PO 7	2
AHS009.15	CLO 15	Use innovative methods to control the level of water pollution in our day to day life.	PO 3, PO 5, PO 7	2
AHS009.16	CLO 16	Acquire Knowledge on global effects and how to interpret with global environmental problem in our daily life	PO 1, PO 7	2
AHS009.17	CLO 17	Acquire knowledge and skills about health and safety protocols when working with polluted environment in day to day life	PO 1, PO 7	2

AHS009.18	CLO 18	Describe the role of government and legal aspects in environmental protection.	PO 7	1
AHS009.19	CLO 19	Knowledge of proper decontamination techniques for solid waste management.	PO 3, PO 7	2
AHS009.20	CLO 20	Understand the importance of EIA for developmental activities to have minimum negative impacts on people	PO 1, PO 7	2
AHS009.21	CLO 21	Prepare entry level for future generations to meet sustainable development.	PO 7	1

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)				P	rogra	am O	utcon	nes (P	Os)					rogram utcome		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3		1													
CLO 2	3		1													
CLO 3	2		2				1									
CLO 4	2		2				1									
CLO 5	3		1		1		1									
CLO 6	2		2				1									
CLO 7	3		1		1		1									
CLO 8	2				1		1									
CLO 9	3						1									
CLO 10	3				1		1									
CLO 11	2						1									
CLO 12	2		2				1									
CLO 13	3		2		2		2									
CLO 14			2		1		1						1			
CLO 15			2		1		1						1			
CLO 16	2						1									
CLO 17	2						1									
CLO 18							1									
CLO 19			1				2									
CLO 20	1						1									
CLO 21			2 = N				2									

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO3 PO5,PO7	SEE Exams	PO1,PO3 PO5,PO7	Assignments	PO1	Seminars	PO1 PO3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS:

Unit-I	ENVIRONMENT AND ECOSYSTEMS								
Definition, see food chains,	Environment: Definition, scope and importance of environment, need for public awareness; Ecosystem: Definition, scope and importance of ecosystem, classification, structure and function of an ecosystem, food chains, food web and ecological pyramids, flow of energy; Biogeochemical cycles; Biomagnifications								
Unit -II	NATURAL RESOURCES								
over utilization resources: Use	ces: Classification of resources, living and nonliving resources; Water resources: Use and n of surface and ground water, floods and droughts, dams, benefits and problems; Mineral e and exploitation; Land resources; Energy resources: Growing energy needs, renewable rable energy sources, use of alternate energy source, case studies.								
Unit -III	BIODIVERSITY AND BIOTIC RESOURCES								
Value of biod India as a meg Threats to bio	nd biotic resources: Introduction, definition, genetic, species and ecosystem diversity; iversity: Consumptive use, productive use, social, ethical, aesthetic and optional values; a diversity nation; Hot spots of biodiversity diversity: Habitat loss, poaching of wildlife, human-wildlife conflicts; Conservation of n situ and ex situ conservation; National biodiversity act.								
Unit -IV	ENVIRONMENTAL POLLUTION, POLLUTION CONTROL TECHNOLOGIES AND GLOBAL ENVIRONMENTAL PROBLEMS								
noise pollution waste and its secondary and Climate chan	I pollution: Definition, causes and effects of air pollution, water pollution, soil pollution, n; Solid waste: Municipal solid waste management, composition and characteristics of e- management; Pollution control technologies: Waste water treatment methods, primary, tertiary; Concepts of bioremediation; Global environmental problems and global efforts: ge, ozone depletion, ozone depleting substances, deforestation and desertification; onventions / protocols: Earth summit, Kyoto protocol and Montreal protocol.								
Unit -V	ENVIRONMENTAL LEGISLATIONS AND SUSTAINABLE DEVELOPMENT								
Environmental legislations: Environmental protection act, air act1981, water act, forest act, wild life act, municipal solid waste management and handling rules, biomedical waste management and handling rules2016, hazardous waste management and handling rules, Environmental impact assessment(EIA); Towards sustainable future: Concept of sustainable development, population and its explosion, crazy consumerism, environmental education, urban sprawl, concept of green building.									
Text Books:									
2. Erach Bł	eph (2005)., Environmental Studies, New Delhi, Tata McGraw Hill Publishing co. Ltd narucha (2005)., Textbook of Environmental Studies for Undergraduate Courses, d, Universities Press.								
Reference Books:									
 Anji Reddy .M (2007), Textbook of Environmental Sciences and Technology, Hyderabad, BS Publications. 									

- Anjaneyulu.(2004), Introduction to Environmental Sciences, BS Publications Anubha Kaushik(2006).,Perspectives in Environmental Science, 3rd Edition, New Delhi, New age 2. 3. international.
- Tyler Miller, Scott Spoolman, "Environmental Science", Cengage Learning, 14th Edition, 2012. 4.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topic/s to be covered	Course Learning Outcomes (CLOs)	Reference
1	Summarize about environment and its importance.	CLO 1	T2: 1.1.1, 1.1.2,1.1.3, 1.2.1,1.2.2 R3:1.1-1.3
2	Discuss environment and importance of ecosystems	CLO 1	R1: 1.1,1.2 R3:1.1-1.3
3	Provides the information regarding ecosystem and applicability.	CLO 1	T2:3.2 R1:1.6.1,1.6.2 R3:1.6,1.7
4	Provides the information regarding ecosystem and applicability	CLO 1	T2:3.2 R1:1.6.1,1.6.2 R3:1.6,1.7
5	Acquire knowledge of how all the animals are competing with their food requirements and also understand the various trophic levels in the food chain.	CLO 2	T2:3.6.1-3.6.3 R1:1.7.1,1.7.2, 1.7.3 R3:1.7.1,1.7.2
6	Describe the flow of energy through the various components of ecosystem	CLO 2	T2:3.4 R1:1.8 R3:1.7.5
7	Examine the importance a of nutrients and flow of nutrients in ecosystem	CLO 3	T2:3.4.1-3.4.4 R1:1.9,1.10 R3:1.7.6
8	Examine the importance a of nutrients and flow of nutrients in ecosystem	CLO 3	T2:3.4.1-3.4.4 R2:1.9,1.10 R3:1.7.6
9	Summarize about the toxicity of heavy metals on the biotic and a biotic components.	CLO 4	R1:1.11 R3:1.7.3
10	Distinguish about different types of natural resources and their applicability and illustrate the utility of renewable resources efficiency	CLO 5	R1:2.1 R3:2.1
11	Describe the impact of over utilization of underground and surface water	CLO 5	R1:2.3,2.4.1, 2.4.2,2.4.3 R3:2.2
12	Discuss the disaster manage mental plans	CLO 6	R1:2.4.4 R3:2.2.4,2.2.5
13	Describe the benefits and property dams	CLO 6	R1:2.4.5 R3:2.3
14	Illustrate the uses of mineral resources	CLO 2 CLO 6	R1:2.5 R3:2.4
15	Enumerate the application of the solar energy in modern days	CLO 6	R1:3.1 R3:2.5
16	Enumerate the application of the wind energy in modern days	CLO 6	R1:3.3.1.5 R3:2.5
17	Illustrate the definition and importance of biodiversity	CLO 6	T2:4.1 R1:4.1 R3:3.1

Lecture No	Topic/s to be covered	Course Learning Outcomes (CLOs)	Reference
18	Acquire the genetic diversity, species and ecosystem diversity	CLO 7	T2:4.1.1,4.1.2, 4.1.3 R1:4.2 R3:3.2
19	Describe the ecological values and consumptive use of ecosystem	CLO 7	T2:4.3 R1:4.3 R3:3.3
20	Recall India is mega diversity nation	CLO 7	T2:4.5 R3:3.4
21	Discuss the hot spot center in and around	CLO 7	T2:4.6 R1:4.6 R3:3.4
22	Analyze the information regarding different causes for loss of biodiversity	CLO 7	T2:4.7 R1:4.4 R3:3.5
23	Analyze various reasons for conflict of species	CLO 7	T2:4.7 R3:3.5.3
24	Illustrate different methods to protect the biodiversity	CLO 7	T2:4.9 R1:4.5 R3:3.7
25	Correlate national biodiversity act	CLO 8	T2:4.9 R1:4.5 R3:3.7
26	Explain the meaning of environmental pollution and classification.	CLO 9	T2:5.1 R1:5.1 R3:4.1
27	Analyze the important pollutants in air pollutants	CLO 9	T2:5.2.1 R1:5.3 R3:4.2
28	Enumerate the sources types and effects of water pollution	CLO 9	T2:5.2.2 R1:5.4 R3:4.6
29	Correlate the sources types and effects of soil pollution	CLO 9	T2:5.2.3 R1:5.5 R3:4.8
30	Analyze the noise quality and permissible levels	CLO 9	T2:5.2.5 R1:5.7 R3:4.13
31	Describe the various methods commonly employed for the disposal of solid waste.	CLO 9	T2:5.3 R1:7.7
32	Identify To understand the recent trends in e- waste management practices.	CLO 10	R1:5.10.6 R3:4.16.3
33	Understand concept of climate change and impacts.	CLO 10	T2:6.6.1 R1:6.5 R3:5.5
34	Summarize the remedial measures of ozone depletion	CLO 10	T2:6.6.4 R1:6.6 R3:5.6,5.7
35	Evolve strategies to environmental issues	CLO 10	R1:6.8 R3:5.10
36	Describe the role of government and legal aspects in environmental protection	CLO 10	T2:6.9-6.14 R1:7.2,7.3,7.4, R3:7.3,7.4,7.5, 7.6,7.7
37	Discuss the silent features of the hazardous waste management	CLO 11	R1:7.9 R3:7.10
38	Understand the importance of EIA for developmental activities	CLO 12	T2:6.14 R3:6.3,6.4

Lecture No	Topic/s to be covered	Course Learning Outcomes (CLOs)	Reference
39	Understand the importance of EIA for developmental activities	CLO 12	T2:6.14 R1:10.1 R3:6.3,6.4
40	State the aim and objectives of sustainable development	CLO 12	T2:6.1 R1:10.5 R3:8.3
41	State the aim and objectives of sustainable development	CLO 13	T2:6.1 R1:10.5 R3:8.3
42	Enumerate population and its explosion	CLO 15	T2:7.2 R1:10.3 R3:8.2
43	State the aim and objectives of sustainable development	CLO 19	T2:7.2.2.2 R1:10.8 R3:8.6
44	Acquire knowledge of environmental education	CLO 18	T2:7.3 R1:10.6 R3:8.4
45	Summarize the environmental ethics and objectives of green buildings	CLO 21	T2:6.5 R1:10.10,10.12 R3:8.10,8.12

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Types of ecosystem, Energy flow,	Seminars /	PO 1	-
	Biomagnification	Field visit		
2	Dams , Mining Activities, Alternative	Seminars /	PO 3	PSO 1
	energy resources	NPTEL		
3	Sources of pollution EIA Methodology,	Guest Lecture	PO 7	-
	Green building			

Prepared by: Ms. M Lakshmi Prasanna, Assistant Professor

HOD, FRESHMAN ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGINEERI	ENGINEERING MECHANICS						
Course Code	AME002	AME002						
Programme	B.Tech	B.Tech						
Semester	II	II AEIMEICE						
Course Type	Core	Core						
Regulation	IARE - R16							
			Theory		Practica	1		
Course Structure	Lectures		Tutorials	Credits	Laboratory	Credits		
	3		1	4	-	-		
Chief Coordinator	Dr. D. Govard	Dr. D. Govardhan, Professor.						
Course Faculty	Mr. T Mahesh	Mr. T Mahesh Kumar, Assistant Professor.						

I. COURSE OVERVIEW:

The aim of Engineering Mechanics is to introduce students to the fundamental concepts and principles applied by engineers -whether civil, mechanical, aeronautical, etc. This course introduces the concepts of engineering based on forces in equilibrium. Topics include concentrated forces, distributed forces, forces due to friction, inertia, work –energy principle and vibrations as they apply to machines, structures, and systems. It is the branch of science for analyzing force systems that acts upon the bodies either at rest or in motion.

II. COURSE PRE-REQUISITES:

Le	evel	Course Code	Semester	Prerequisites
	-	-	-	Basic concepts of physics and mathematics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Engineering mechanics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for	CIA
---------------------------------	-----

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiai ks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Term paper, Seminars
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Lecture, Assignments.
	aeronautical/aerospace engineering in innovative, dynamic		
	and challenging environment for design and development		
	of new products		
PSO 2	Problem solving skills: imparted through simulation	-	-
	language skills and general purpose CAE packages to		
	solve practical, design and analysis problems of		
	components to complete the challenge of airworthiness for		
	flight vehicles		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry		
	practice to fabricate and test and develop the products with		
	more innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats		

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course	should enable the students to:
Ι	Develop the ability to work comfortably with basic engineering mechanics concepts required for analyzing dynamic structures.
II	Identify an appropriate structural system to studying a given problem and isolate it from its environment, model the problem using good free-body diagrams and accurate equilibrium equations.
III	Identify and model various types of loading and support conditions that act on structural systems, apply pertinent mathematical, physical and engineering mechanical principles to the system to solve and analyze the problem.
IV	Understand the meaning of impulse and momentum, virtual work and solve the field problems.
V	Solve the problem of equilibrium by using the principle of work and energy and vibrations for preparing the students for higher level courses such as, Mechanics of Solids, Mechanics of Fluids etc.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
		the ability to:	Mapped	Mapping
AME002.01	CLO 1	Understand the concepts of kinematics of the	PO1	3
	CT O O	particles and rectilinear motion.	DO1	2
AME002.02	CLO 2	Demonstrate knowledge of ability to identify &	PO1	2
		apply fundamentals to solve problems like motion		
		curves, rigid body motion and fixed axis rotation.		
AME002.03	CLO 3	Explore knowledge & ability to solve various	PO2	2
		particle motion problems.		
AME002.04	CLO 4	Derive the D' Alembert's principle and apply it to	PO2	1
		various field problems of kinetic motion.		
AME002.05	CLO 5	Discuss the nature of relation between force and	PO4	2
		mass under the influence of time.		
AME002.06	CLO 6	Develop the relations for motion of body in lift	PO2	2
		and on inclined plane.		
AME002.07	CLO 7	Determine the impact, impulse and impulsive	PO1	3
		forces occurring in the system.		
AME002.08	CLO 8	Understand the inter relationship between	PO1	2
		impulse-momentum and virtual work and an		
		ability to use such relationships to solve practical		
		problems.		
AME002.09	CLO 9	Knowledge of the lifting machines and simple	PO2	2
		framed structures equilibrium criteria, and the		
		knowledge of the equilibrium condition systems.		
AME002.10	CLO 10	Determine the effect of law of conservation of	PO4	1
		energy and its consideration in field problems.		
AME002.11	CLO 11	Discuss the application of work energy method to	PO1	2
		particle motion.		
AME002.12	CLO 12	Develop the work energy relations and apply to	PO2	2
		connected systems.		_
AME002.13	CLO 13	Understand the fixed axis rotation theory and	PO1	3
11012002.13	010 15	solving the field problems by application of work	101	5
		energy method.		
AME002.14	CLO 14	Introduction to concepts of vibration and explain	PO4	3
71012002.11	CLO II	the relation between simple harmonic motion and	101	5
		the equilibrium systems.		
AME002.15	CLO 15	Derive the expressions for the concepts of simple,	PO2	2
/ 10112002.13		compound and torsional pendulums.	102	2
AME002.16	CLO 16	Explore the use of modern engineering tools,	PO4	1
AWIE002.10		software and equipment to prepare for	r 04	1
		competitive exams, higher studies etc.		

3 = High; 2 = Medium; 1 = Low

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3															
CLO 2	2												1			
CLO 3		2														
CLO 4		1											2			
CLO 5				2												
CLO 6		2														
CLO 7	3															
CLO 8	2															
CLO 9		2											2			
CLO 10				1												
CLO 11	2															
CLO 12		2														
CLO 13	3															
CLO 14				3									1			
CLO 15		2														
CLO 16				1												

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1 PO2 PO4	SEE Exams	PO1 PO2 PO4	Assignments	PO1 PO4	Seminars	PO2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO2						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

STLLADUS						
UNIT-I	KINEMATICS OF PARTICLES- RECTILINEAR MOTION					
	cle – Rectilinear motion – motion curves – Rectangular components of curvilinear motion did Body - Types of rigid body motion - Angular motion - Fixed Axis Rotation.					
UNIT-II	KINETICS OF PARTICLE					
Relation Betwee	nitions of Matter, body, particle, mass, weight, inertia, momentum. Newton's law of motion. n force & mass. Motion of a particle in rectangular coordinates. D'Alembert's of Lift. Motion of body on an inclined plane. Motion of connected Bodies.					
UNIT-III	IMPULSE AND MOMENTUM, VIRTUAL WORK					
conservation of M Gun. Impulse Mor	omentum: Introduction- Impact, Momentum, Impulse & Impulsive forces, Units. Law of Momentum, Newton's law of collision of elastic bodies- coefficient of Restitution. Recoil of mentum Equation. RK: Introduction – Principle of virtual work – Applications – Beams, Lifting machines, uctures.					
UNIT-IV	WORK ENERGY METHOD					
	ion of Energy, Application of Work Energy Method to particle motion and connected system- lied to Connected Systems - Work energy applied to Fixed Axis Rotation					
UNIT-V	MECHANICAL VIBRATIONS					
	Concepts – Simple Harmonic Motion – Free vibrations, simple and Compound Pendulums – n – Free vibrations without damping: General cases.					
Text Books:						
 Engineering N Engineering N 	"Engineering Mechanics", Prentice Hall, 12th Edition, 2009. Mechanics - Statics and Dynamics by Ferdinand.L. Singer / Harper International Edition. Mechanics/ S. Timoshenko and D.H. Young, Mc Graw Hill Book Company.					
REFERENCES :						
 S. Bhavikatti, "A Text Book of Engineering Mechanics", New Age International, 1st Edition, 2012. A.K Tayal, "Engineering Mechanics", Uma Publications, 14th Edition, 2013. R.K. Bansal "Engineering Mechanics", Laxmi Publications, 8th Edition, 2013. Engg. Mechanics / KL Kumar / Tata McGraw Hill. Engg. Mechanics / S.S. Bhavikati & K.G. Rajasekharappa. Basudeb Bhattacharya, "Engineering Mechanics", Oxford University Press, 2nd Edition, 2014. 						
7. K. Vijay Rede	dy, J. Suresh Kumar, "Singer's Engineering Mechanics, Statics and Dynamics", B S st Edition, 2013.					

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Motion of a particle – Rectilinear motion	CLO1	T2:7.3
3-5	motion curves – Rectangular components of curvilinear motion	CL01	T2:7.5,7.6 R1:2.9.2
6-8	Kinematics of Rigid Body	CL01	T2:7.7 R1:2.10
9	Types of rigid body motion - Angular motion	CLO2	T2:7.7 R1:2.10
10	Fixed Axis Rotation	CLO2	T2:7.11
11	Introduction-Definitions of Matter, body, particle, mass, weight, inertia, momentum.	CLO3	T2:7.11 R1:2.32
12-13	Newton's law of motion. Relation Between force & mass.	CLO3	T2:15.2 R1:8.2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
14-15	Motion of a particle in rectangular coordinates.	CLO3	T2:15.7
			R1:8.3.3
16-17	D'Alembert's Principle.	CLO4	T2:15.13
			R1:8.7.2
18-20	Motion of Lift. Motion of body on an inclined plane. Motion of connected Bodies	CLO5	T2:15.13 R1:8.7.2
21	Introduction- Impact, Momentum, Impulse & Impulsive	CLO6	T2:15.16
	forces, Units.		R1:8.7.3
22-24	Law of conservation of Momentum	CLO6	T1:11.9
			R2:12.24
25-26	Newton's law of collision of elastic bodies	CLO7	T1:11.9
			R3:12.25
27-28	Coefficient of Restitution. Recoil of Gun. Impulse Momentum	CLO8	T1:3.2
	Equation.		R3:3.2
29	Introduction – Principle of virtual work – Applications.	CLO8	T1:3.3.1
			R3:3.2
30	Beams, Lifting machines, Simple framed structures	CLO9	T2:16.5
			R1:8.10
31	Law of conservation of Energy.	CLO10	T2:16.9
			R1:8.11.1
32-33	Application of Work Energy Method to particle motion and connected system.	CLO11	T2:16.9 R1:8.11.2
34-35	Work energy applied to Connected Systems.	CLO12	T2:16.8
			R1:8.12.1
36-39	Work energy applied to Fixed Axis Rotation.	CLO13	T2:16.8 R1:8.12.2
40	Definitions and Concepts.	CLO14	T2:16.11
40	Demittons and Concepts.	CL014	R1:8.14
41-42	Simple Harmonic Motion – Free vibrations	CLO15	T2:16.11
			R1:8.20
43-44	Simple and Compound Pendulums – Torsion Pendulum	CLO15	T2:16.12
			R1:8.19
45-48	Free vibrations without damping: General cases.	CLO16	T2:16.12
			R1:8.77

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Banking angle theory for curvilinear motion	Guest lecturers/NPTEL	PO1	PSO1
2	Different types of loads on beams	Seminars	PO2	PSO1
3	Application of vibration theory to field problems	Guest lecturers/Seminars	PO4	PSO1

Prepared by:

Mr. T Mahesh Kumar, Assistant Professor.

III SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	INTRODUCTION TO AEROSPACE ENGINEERING							
Course Code	AAE001	AAE001						
Programme	B.Tech	B.Tech						
Semester	III A	III AE						
Course Type	Foundation							
Regulation	IARE - R	16						
		Theory	Practical					
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits			
	3	-	3	-	-			
Chief Coordinator	Mr. R Sabari Vihar, Assistant professor							
Course Faculty	Ms. K. Sai Priyanka Assistant Professor							

I. COURSE OVERVIEW:

Introduction to Aerospace engineeringcovers the fundamental concepts, and approaches of aerospaceengineering, and are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, LTA vehicles. The connections between theory and practice are realized in the design exercises. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new science and mathematics.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS007	Ι	Applied Physics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Introduction to aerospace engineering	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	/	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs	
•	/	LCD / PPT	~	Seminars	×	Mini Project	~	Videos	
	Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiarks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Assignments
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Videos

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Tutorials
	aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development		
	of new products		
PSO2	Problem-solving Skills: Imparted through simulation		
	language skills and general purpose CAE packages to		
	solve practical, design and analysis problems of components to complete the challenge of airworthiness for		
	flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing		
	different types of in house and training and industry		
	practice to fabricate and test and develop the products with		
	more innovative technologies		
PSO4	Successful career and entrepreneurship: To prepare the	1	Seminars
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aeronautical/aerospace		
	allied systems to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:								
Ι	Get the knowledge of technical areas of aerospace engineering including mechanics and physics of fluids, structures and materials, instrumentation, control and estimation, humans and automation, propulsion and energy conversion, aeronautical and astronautical systems								
II	Understand the methodology and experience of analysis, modeling, and synthesis								
III	Understand the evolution of human space exploration with a brief introduction to the missions conducted by various countries								
IV	Knowledge in satellite engineering and the systems involved in the operation of satellites.								

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AAE001.01	CLO 1	Understand, Identify, Study and comprehend processes that lead to solutions to a particular problem.	PO1	2
AAE001.02	CLO 2	Develop one- self to gain knowledge about current technical term which helps to extend the outputs of research.	PO2	2
AAE001.03	CLO 3	Outline performance of the output of research, development, or design.	PO2	2
AAE001.04	CLO 4	Identify, solve new problems and gain new knowledge.	PO1	2
AAE001.05	CLO 5	Understand about the performance parameters, performance in steady flight, cruise, climb, range, endurance, accelerated flight symmetric maneuvers, turns, sideslips, takeoff and landing.	PO1	2
AAE001.06	CLO 6	Getting knowledge about the theory to produce a safe, effective, economic production of aircraft.	PO3	2
AAE001.07	CLO 7	Understand the theoretical knowledge behind the design and development of aircrafts.	PO1	2
AAE001.08	CLO 8	Gain knowledge about the basic Aerodynamics, Flight mechanics and aircraft structures which are the foundation stones for knowledge based exams.	PO1	2
AAE001.09	CLO 9	Discuss the principle constituents of the transportation system involved in civil and commercial aircrafts and understanding the working of space propulsion systems.	PO7	1
AAE001.10	CLO 10	Extend the outputs of earlier research and discover good ideas for new products or improving current products.	PO3	2
AAE001.11	CLO 11	Memorize procedure and steps to keep the products working effectively.	PO3	2
AAE001.12	CLO 12	Gain knowledge about the anatomy of aircraft, helicopters, satellites and other air vehicles, and about the working importance of each component in an air vehicle.	PO1	2
AAE001.13	CLO 13	Ability to summarize the efficiency of the design in achieving the mission goal and safety of flight.	PO3	2
AAE001.14	CLO 14	Understand the impact of radiations in the outer space on the spacecrafts and satellites and safety precautions to be followed.	PO7	1
AAE001.15	CLO 15	Choose a concept or idea of technical real time problems to form solutions for the same.	PO1	2

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)												n Specif es (PSC		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	2		2										2			1
CLO 2	2	3											2			
CLO 3		1											3			1
CLO 4																1
CLO 5	2		3													1
CLO 6	2		2										2			
CLO 7													2			
CLO 8	2		2										2			1
CLO 9	2															1
CLO 10			1										1			1
CLO 11																1
CLO 12																1
CLO 13	2															1
CLO 14			2										2			
CLO 15	2 – 11		2			1 – T /							2			1

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2,	SEE Exams	PO 1, PO 2, PO 3	Assignments	PO 1, PO 2	Seminars	PO 3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	HISTORY OF FLIGHT AND SPACE ENVIRONMENT
helicopters, classification atmosphere,	d dirigibles, heavier than air aircraft, commercial air transport; Introduction of jet aircraft, missiles; Conquest of space, commercial use of space; Different types of flight vehicles, as exploring solar system and beyond, a permanent presence of humans in space; Earth's the standard atmosphere; The temperature extremes of space, laws of gravitation, low earth orbit, benefits of microgravity; Environmental impact on spacecraft, space debris; Planetary ts
UNIT-II	INTRODUCTION TO AERODYNAMICS
coefficients; airfoils, asp	the airplane, helicopter; Understanding engineering models; Aerodynamic forces on a wing, force Generating lift, moment coefficients; Aerodynamic forces on aircraft – classification of NACA ect ratio, wing loading, mach number, centre of pressure and aerodynamic centreaerofoil cs-lift, drag curves; Different types of drag.
UNIT-III	FLIGHT VEHIVLE PERFORMANCE AND STABILITY
symmetric r	e parameters, performance in steady flight, cruise, climb, range, endurance, accelerated flight naneuvers, turns, sideslips, takeoff and landing. Flight vehicle Stability, static stability, dynamic ngitudinal and lateral stability; Handling qualities of the airplanes
UNIT-IV	INTRODUCTION TO AIRPLANE STRUCTURES AND MATERIALS, POWER PLANT
non-metallic	es of construction, monocoque, semi-monocoque; Typical wing and fuselage structure; Metallic & e materials, use of aluminum alloy, titanium, stainless steel and composite materials; Basic ideas es, use of propeller and jets for thrust production; Principles of operation of rocket, types of rockets.
UNIT-V	SATELLITE SYSTEMS ENGINEERING HUMAN SPACE EXPLORATION
structures, n keeping; Spa Soviet and space Shuttl	ssions, an operational satellite system, elements of satellite, satellite bus subsystems; Satellite nechanisms and materials; Power systems; Communication and telemetry; Propulsion and station ace missions, mission objectives. Goals of human space flight missions, historical background, the US missions; The mercury, Gemini, Apollo (manned flight to the moon), Skylab, apollo-soyuz, e; International space station, extravehicular activity; The space suit; The US and Russian designs; systems, flight safety; Indian effort in aviation, missile and space technology.
Text Books	
	wman D, "Interactive Aerospace Engineering and Design", McGraw-Hill, 1 st Edition, 2002. derson J. D, "Introduction To Flight", McGraw-Hill Education, 5 th Edition,2002
Reference H	Books:
2. Bai	rmode. A. C, "Flight without Formulae", McGraw Hill, 4 th Edition, 1997. rnard R.H and Philpot. D.R, "Aircraft Flight", Pearson, 3 rd Edition, 2004. attonP.J, "Flight Planning", Blackwell Publisher, 6 th Edition, 2002.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Balloons and dirigibles, heavier than air aircraft, commercial air transport.	CL01	T3 - 1.1
2	Introduction of jet aircraft, helicopters, missiles.	CL01	T3 - 1.2
3	Conquest of space, commercial use of pace, exploring solar system and	CL02	T3- 1.3
	beyond, a permanent presence of humans in space.		
4	Earth's atmosphere, standard atmosphere, temperature extremes of space.	CL02	T1-1.6
5	Laws of gravitation, low earth orbit, microgravity, benefits of microgravity.	CL03	T1-1.8.1
6	The near earth radioactive environment. The magnetosphere.		T1-1.8.2
	Environmental impact on spacecraft.		

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
7	Meteoroids and micrometeoroids, space debris. Planetary environments.	CL02	T1-1.8.4
8	Anatomy of the airplane, helicopter, launch vehicles and missiles, space vehicles.	CL012	T3-1.9
9-10	Static forces and moments on the vehicle.	CL07	T2-2.1
11	Understanding engineering models aerodynamic forces on a wing, force coefficients. Generating lift.	CL010	T3-2.2
12	Moment coefficients, center of pressure, aerodynamic of wings. Sources of drag.	CL08	T2-2.4
13-14	Thrust for flight, the propeller and the jet engine, governing equations, rocket engines.	CL07	T2-3.1
15-16	Performance parameters, performance in steady flight.	CL05	T2-3.5
17-19	Cruise, climb, range, endurance, accelerated flight symmetric maneuvers, turns, sideslips, takeoff and landing.	CL05	T2-3.7.1
20-22	Flight vehicle Stability, static stability, dynamic stability. Longitudinal and lateral stability, handling qualities of theairplanes.	CL08	T2-3.73
23-24	General types of construction, monocoque, semi-monocoque.	CL08	T1-3.8
25	Typical wing and fuselage structure.	CL08	T1-3.8.4
26	Metallic & non-metallic materials.	CL010	T1-3.8.5
27-28	Use of aluminum alloy, titanium, stainless steel.	CL010	T1-4.2
29-30	Use of composite materials.	CL010	T1-4.4
31-32	Basic ideas about engines, use of propeller and jets for thrust production.	CL011	T1-4.5
33	Principles of operation of rocket, types of rockets.	CL09	T1-4.6
34-35	Satellite missions, an operational satellite system, elements of satellite, satellite bus subsystems.	CL013	T1-4.7.1
36	Satellite structures, mechanisms and materials.	CL014	T1-4.9
37-39	Propulsion and station keeping. Space missions. Mission objectives. Case studies.	CL011	T1-5.1.1
40-41	Communication and telemetry. Thermal control. Attitude determination and control.	CL015	T1-5.2
42	Goals of human space flight missions. Historical background. The Soviet and US missions.	CL02	T1-5.3
43-44	The Mercury, Gemini, Apollo (manned flight to the moon), Skylab, Apollo-Soyuz, Space Shuttle. International Space Station, extravehicular activity.	CL02	T1-5.6
45	The space suit. The US and Russian designs. Life support systems. Flight safety.	CL02	T1-5.7

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Gain information about lift augmentation devices and control surfaces	Seminars / Guest Lectures / NPTEL	PO 1, PO 3	PSO 4

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	THEORY	THEORY OF STRUCTURES					
Course Code	AAE002						
Programme	B.Tech						
Semester	Ш	AE					
Course Type	Core						
Regulation	IARE - R16	5					
	Theory Practical				l		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	3	2	
Chief Coordinator	Dr. Sudhir Sastry .Y.B, Professor.						
Course Faculty	Mr. T Mahesh Kumar, Assistant Professor.						

I. COURSE OVERVIEW:

The primary objective of The Theory of Structures is concerned with establishing an understanding of the behavior of structures such as beams, columns, frames, plates and shells, when subjected to applied loads or other actions which have the effect of changing the state of stress and deformation of the structure.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME002	II	Engineering Mechanics	4
UG	AHS007	Ι	Applied Physics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Theory of Structures	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pat	tern for CIA
-------------------------	--------------

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiai ks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments, term paper
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Term paper, quiz
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments, Practical's

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Lecture, Assignments.
PSO 2	Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	-	-
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	-	-

3 = **High; 2** = **Medium; 1** = **Low**

VIII. COURSE OBJECTIVES (COs):

The course	The course should enable the students to:							
Ι	Understand the several of Concepts of stress and strain in mechanical components by stressing the fundamentals							
II	Calculate bending stresses and shear stresses for in a beam of symmetric and un-symmetric sections							
III	Explain the deflections of beams with various load conditions by different approaches							
IV	Discuss the buckling behavior of columns with different load and boundary conditions							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE002.01	CLO 1	Calculate the stress strain relations in conjunction	PO1	3
11112002.01	CLO I	with elasticity and material properties	101	5
AAE002.02	CLO 2	Describe the resistance and deformation in members	PO1	2
		which are subjected to axial, flexural and torsion		
		loads.		
AAE002.03	CLO 3	Discuss thermal explanations in solid bars and	PO2	2
		induced thermal stresses		
AAE002.04	CLO 4	Solve for bending and shear stresses of symmetric	PO2	1
		and un-symmetric beams under loading conditions		
AAE002.05	CLO 5	Calculate the shear stresses developed in various	PO4	2
		sections of beams.		
AAE002.06	CLO 6	Calculate the flexural developed in various sections	PO2	2
		of beams of real field problems.		
AAE002.07	CLO 7	Differentiate between redundant structures and	PO1	3
		determinate structures.		
AAE002.08	CLO 8	Analyze the redundant complex structural	PO1	2
		components subjected to different loading and		
		boundary conditions.		
AAE002.09	CLO 9	Solve for deflections of beams under loading with	PO2	2
		various approaches		
AAE002.10	CLO 10	Calculate the stability of structural elements and	PO4	1
		determine buckling loads.		
AAE002.11	CLO 11	Discuss critical buckling load for column with	PO1	2
		various loading and end conditions		
AAE002.12	CLO 12	Apply a theories and to predict the performance of	PO2	2
		bars under axial loading including buckling.		
AAE002.13	CLO 13	Describe the behavior of structural components	PO1	3
		subjected to various loading and support conditions		
		based on principles of equilibrium and		
		constitutional relationships.		
AAE002.14	CLO 14	Explain the stress transformation and concept of	PO4	3
		principle plane and principle stresses		
AAE002.15	CLO 15	Evaluate principal stresses, strains and apply the	PO2	2
		concept of failure theories for design		
AAE002.16	CLO 16	Acquire Basic knowledge to solve real time	PO4	1
		problems in Aircraft structure with different loading		
		conditions		
AAE002.17	CLO 17	Apply the fundamental concepts in competitive	PO2	3
		examinations		

³ = High; **2** = Medium; **1** = Low

Course Learning							utcon						Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3															
CLO 2	2												1			
CLO 3		2														
CLO 4		1											2			
CLO 5				2												
CLO 6		2														
CLO 7	3															
CLO 8	2															
CLO 9		2											2			
CLO 10				1												
CLO 11	2															
CLO 12		2														
CLO 13	3															
CLO 14				3									1			
CLO 15		2														
CLO 16				1												
CLO 17		3											2			

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1, PO2 PO4	SEE Exams	PO,1PO2 PO4	Assignments	PO1, PO4	Seminars	PO2
Laboratory Practices	PO1	Student Viva	PO4	Mini Project	-	Certification	-
Term Paper	PO1, PO2						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

	I							
Unit-I	INTRODUCTION							
Mechanical properties of materials; Stresses and strains; Hooke's law, elastic constant, relation between modulii, working stress, factor of safety, poisons ratio; bars of varying cross section; Thermal stresses. Torsion of solid and hollow circular shafts and shear stress variations; Power transmission in shafts; Shear force and bending moment diagrams for different types of beams with various loads.								
Unit-II	STRESSES IN BEAMS							
Bending stresses and Shear stress variation in beams of symmetric and un-symmetric sections; Beams of uniform strength; Flexural stresses: Bending equations, calculation of bending stresses for different sections of beams like I, L, T, C, angle section.								
Unit-III	BEAMS AND COLUMNS							
Deflection of beams by Double integration method, Macaulay's method, moment area method, conjugate beam method; Principle of superposition. Columns, types of columns, Euler's formula instability of columns, Rakine's and Jonson's formula, Eigen values and Eigen modes, concept of beam-column.								
Unit-IV REDUNDANT STRUCTURES								
Redundant analys	frames, analysis of trusses; Determinate and indeterminate structures, order of redundancy; sis, analysis of determinate structures, area movement method, Clayperons method, slope I, moment distribution method							
Unit-V	THEORY OF ELASTISITY							
strain cases Airy'	compatibility conditions and constitute relations for elastic solid and plane: generalized plane s stress function Stress on inclined planes, stress transformations determination of principal s by analytical method and graphical method - Mohr's circles and its constructions.							
Text Books:								
 R. K Bansal, —Strength of Materialsl, Laxmi publications, 5th Edition, 2012. T. H. G. Megson, —Aircraft Structures for Engineering Studentsl, Butterworth-Heinemann Ltd, 5th Edition, 2012 Gere, Timoshenko, —Mechanics of Materialsl, McGraw Hill, 3rd Edition, 1993. REFERENCES:								
 Dym, C. L, Shames, I. H, —Solid Mechanicsl, McGraw Hill, Kogakusha, Tokyo, 7th Edition, 2007. Stephen Timoshenko, —Strength of Materialsl, Vol I & II, CBS Publishers and Distributors, 3rd Edition, 2004. R. K. Rajput, —Strength of Materialsl, S. Chand and Co., 1st Edition, 1999 Timoshenko, S, Young, D. H. —Elements of Strength of Materialsl, T. Van Nostrand Co. Inc., Princeton N.J, 4th Edition, 1977. 								

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-3	UNIT 1 INTRODUCTION Equilibrium and Compatibility conditions for elastic solids, 2D elasticity equations for plane stress,	CLO1	T2:5.5 R1:1.12.1
4-6	2D elasticity equations plane strain and generalized plane strain cases Airy's stress function	CL01	T2:5.6 R1:1.12.3
7-8	Simple problems in bars of varying cross sections and thermal stresses	CLO1	T2:5.10 R1:1.15
9-11	2D Elastic equations of torsion of solids an hollow circular shafts	CLO2	T2:5.15 R1:1.16
12-14	Concept of principal planes, principal stress and Strains Power transmission in shafts	CLO3	T2:5.17 R1:1.13.1
15-17	Problems on different beams of Shear force and bending moment diagrams for different types of beams with various loads	CLO4	T2:5.18 R1:1.13.2
18-20	UNIT 2 STRESSES IN BEAMS Bending stresses and Shear stress variation in beams of symmetric and un-symmetric sections;	CLO5	T2:5.19 R1:1.13.3
21-23	Beams of uniform strength; Flexural stresses	CLO5	T2:5.20 R1:1.17.1
24-26	Bending equations, calculation of bending stresses for different sections of beams like I, L, T, C, angle section.	CLO6	T2:5.24 R1:1.17.3
27-30	UNIT 3 BEAMS AND COLOUMNS Deflection of beams by Double integration method, Macaulay's method	CLO7	T2:6.1 R1:2.3
31-33	Deflection of beams using moment area method, conjugate beam method; Principle of superposition.	CLO8	T2:6.3 R1:2.6.1
34-37	Columns, types of columns, Euler's formula instability of columns,	CLO9	T2:6.5 R1:2.6.2
38-39	Rakine's and Jonson's formula, Eigen values and Eigen modes, concept of beam-column.	CLO10	T2:7.3 R1:2.8
39-41	UNIT 4 REDUNDANT STRUCTURES Indeterminate structures and order of redundancy, Introduction to redundant analysis, Statically determinate models, Use of free body diagrams to explain compatibility and redundant analysis principles.	CLO11	T2:7.5,7.6 R1:2.9.2
42-44	Statically determinate models- Area movement method use of free body diagrams to explain compatibility and redundant analysis principles.	CLO12	T2:7.7 R1:2.10
45-47	Statically determinate models- Clayprons method use of free body diagrams to explain compatibility and redundant analysis principles.	CLO13	T2:7.7 R1:2.10
48-50	Singularity method for uniform beams with various boundary	CLO14	T2:7.11

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	and support conditions (props, hinges and fixities) subjected to		R1:2.10.2
	distributed / discrete loads (including moments).		
51-53	UNIT 5	CLO15	T2:7.11
	THEORY OF ELASTISITY		R1:2.32
	Equilibrium and compatibility conditions and constitute		
	relations for elastic solid and plane.		
54-56	generalized plane strain cases Airy's stress function).	CLO16	T2:15.2
			R1:8.2
57-59	Stress on inclined planes, stress transformations	CLO16	T2:15.7
	L ·		R1:8.3.3
60-62	determination of principal stresses and strains by analytical	CLO17	T2:15.13
	method and graphical method - Mohr's circles and its		R1:8.7.2
	constructions		

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Broad knowledge of engineering materials and material properties	Seminars / Guest Lectures	PO1	PSO1
2	Practical Exposure about the stress deflections and stability of elements	Seminars / Guest Lectures / NPTEL	PO2	PSO1

Prepared by:

Mr. T Mahesh Kumar, Assistant Professor.

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	FLUID	FLUID MECHANICS AND HYDRAULICS						
Course Code	AAE003							
Programme	B.Tech	B.Tech						
Semester	III	III AE						
Course Type	Foundation							
Regulation	IARE - R16							
			Theory		Practic	cal		
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits		
	3 1 4 3 2							
Chief Coordinator	Mr. G Satya Dileep, Assistant Professor.							
Course Faculty	Mr. R Sa	abar	i Vihar, Assistan	t Professor.				

I. COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of algorithm as a precise mathematical concept, and study how to design algorithms, establish their correctness, study their efficiency and memory needs. The course consists of a strong mathematical component in addition to the design of various algorithms.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHS002	Ι	Linear Algebra and Differential Equations
UG	AME002	II	Engineering Mechanics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Fluid Mechanics And Hydraulics	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	~	MOOCs	
V	LCD / PPT	~	Seminars	×	Mini Project	~	Videos	
×	Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component		Theory			
Type of Assessment	CIE Exam	Quiz / AAT	- Total Marks		
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Presentation on real-world problems
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Assignments
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Videos

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO1	Professional skills: Able to utilize the knowledge of	1	Seminar
	aeronautical/aerospace engineering in innovative,		
	dynamic and challenging environment for design and		
	development of new products		
PSO2	Problem-solving Skills: Imparted through simulation	-	-
	language skills and general purpose CAE packages to		
	solve practical, design and analysis problems of		
	components to complete the challenge of airworthiness		
	for flight vehicles.		
PSO3	Practical implementation and testing skills:	-	-
	Providing different types of in house and training and		
	industry practice to fabricate and test and develop the		
	products with more innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare	-	-
	the students with broad aerospace knowledge to design		
	and develop systems and subsystems of aerospace and		
	allied systems and become technocrats.		
	The A Median 1 Land	1	

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The cou	The course should enable the students to:							
Ι	Illustrate about the basic properties of a fluid, hydrostatic forces on submerged bodies and different manometers.							
II	Derive the basic principles of a fluid-continuity, momentum, Euler and Bernoulli's equations.							
III	Explain the concept of boundary layer theory and importance of Prandtl's boundary layer theory.							
IV	Understand the flow through pipes and their losses for different geometries.							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE003.01	CLO 1	Define the properties of fluids and its	PO 1	3
		characteristics, which will be used in aerodynamics,		
		gas dynamics, marine engineering etc.		
AAE003.02	CLO 2	Explain the hydrostatic forces on submerged bodies,	PO 1	3
		variation with temperature and height with respect		_
		to different types of surfaces.		
AAE003.03	CLO 3	Define different types of manometers and explain	PO 1	3
		buoyancy force, stability of floating bodies by		_
		determining its metacentre height.		
AAE003.04	CLO 4	Define fluid kinematics and classification of flows,	PO 2	2
	020.	concepts of stream function and velocity potential	102	-
		function which provides solution for velocity and		
		acceleration of fluid flow in real time applications.		
AAE003.05	CLO 5	Explain one dimensional, two dimensional flows in	PO 3	2
AAL005.05	CLO J	wind tunnel with classification of both compressible	PO 4	2
		and in compressible flows in continuity equation.	104	
AAE003.06	CLO 6	Recognize the surface and body forces required for	PO 2	1
AAL005.00	CLU 0	obtaining momentum equation and energy equation	102	1
		and explain types of derivatives utilized in various		
		flow field conditions.		
A A E002 07	CLO 7		DO 2	2
AAE003.07	CLO 7	Develop Bernoulli's equation from Euler's equation	PO 2	2
		and explain phenomenological basis of Navier –		
		stokes equation which are widely used in		
		aerodynamics and gas dynamics for real time		
	ar e e	problems.	D O 0	
AAE003.08	CLO 8	Demonstrate Buckingham's π theorem and explain	PO 3	2
		similarity parameters used for scale down models	PO 4	
		and explain flow measurements with dimensionless		
	~~ ~ ~	parameters.		
AAE003.09	CLO 9	Demonstrate for competitive exams, the concepts of	PO 3	2
		boundary layer and qualitative description of		
		boundary layer thickness and velocity profile on a		
		flat plate.		
AAE003.10	CLO 10	Distinguish the pressure drag and skin friction drag	PO 2	2
		and state the relation between the frictions of both		
		the drags.		
AAE003.11	CLO 11	Demonstrate the various types of major and minor	PO 1	3
		losses in pipes and explain flow between parallel		
		plates.		
AAE003.12	CLO 12	Discuss fully developed flow through pipes and	PO 1	3
		variation with friction factor with Reynolds number.		
AAE003.13	CLO 13	Understand Moody's chart for identifying friction	PO 3	3
		factor against Reynold's number for various values		
		of roughness.		
AAE003.14	CLO 14	Describe the concepts of turbo machinery in the	PO 2	3
· ·		field of aerospace engineering and concepts of		-
		internal flows through engines.		
1 1 5000 1 5			DC 2	
	(CLO)15	Explain the velocity triangles for turbine blades and	PO 2	3
AAE003.15	CLO 15	centrifugal pumps.		-

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)											n Speci les (PS)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												1			
CLO 2	3												1			
CLO 3	3												1			
CLO 4		2														
CLO 5		2	2													
CLO 6		1														
CLO 7		2														
CLO 8			2	2												
CLO 9			2													
CLO 10		2														
CLO 11	3												1			
CLO 12	3												1			
CLO 13			3													
CLO 14		3														
CLO 15		3														

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3	SEE Exams	PO 1, PO 2 PO 3	Assignments	PO 1, PO 2	Seminars	PO 2 PO 3
Laboratory Practices	PO 3, PO 4	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	FLUID PROPERTIES AND FLUID STATICS
incompressibl at a point, Pa inclined surfa	cific weight, specific gravity, surface tension and capillarity, Newton's law of viscosity le and compressible fluid, numerical problems; Hydrostatic forces on submerged bodies - Pressure scal's law, pressure variation with temperature and height, center of pressure plane, vertical and ces; Manometers - simple and differential Manometers, inverted manometers, micro manometers ges and numerical problems. Buoyancy - Archimedes principle, metacenter, Meta centric heigh Stability.
UNIT-II	FLUID KINEMATICS AND BASIC EQUATIONS OF FLUID FLOW ANALYSIS
uniform, non- two dimensio compressible	path line, streak line, stream surface, stream tube, classification of flows, steady, unsteady uniform, laminar, turbulent flows, one dimensional approximation, examples of real 1-D flows nal approximation, 2-D flow in wind tunnel; Continuity equations for 1-D and 2-D flows both and incompressible, stream function for two dimensional incompressible flows; Vortices ow, velocity potential function.
UNIT-III	FLUID DYNAMICS
law; Applica deformation; Surface and equation, Eule vortex flows, meter and orin Statement of geometric, ki	by a system in integral form: Reynolds transport theorem, Conservation of mass, Newton's 2nd tion of the basic laws for a control volume; Kinematics; Motion of a fluid particle; Fluid Differential analysis of fluid motion: Continuity equation, Differential momentum equation body forces, substantive derivative, local derivative and convective derivative, momentum er's and Bernoulli's equation, phenomenological basis of Naviers- stokes equation, introduction to flow measurements : pressure, velocity and mass flow rate, viscosity, pitot-static tube, ventur fice meter, viscometers. Buckingham's π - theorem, similarity parameters - Reynolds number, Froude number, concepts o nematic and dynamic similarity, Reynolds number as a very approximate measure of ratio o and viscous force.
UNIT-IV	BOUNDARY LAYER THEORY AND PIPE FLOW
boundary lay equation, maj	yer - introductory concepts of boundary layer, large Reynolds number flows and Prandtl's er hypothesis Pressure drag and skin friction drag; Pipe flow - Reynolds experiment, Darcy's or and minor losses in pipes and numerical problems. Flow between parallel plates, flow through fully developed flow, Turbulent flow, variation of friction factor with Reynolds's Number t. TURBO MACHINERY
	and classification of fluid machines: Turbo machinery analysis; The angular momentum principle
Euler turbo m	achine equation; Velocity triangles; Application to fluid systems - Working principle overview o , pumps and compressors.
Text Books:	
 R. K Bans Robert W 1995. 	H, "Mechanics of Fluids: Kogakusha", Tokyo, 7th Edition, 2007. sal, "Fluid mechanics and hydraulic machines", Laxmi publications ltd, 9th Edition, 2011. 7 Fox, Alan T McDonald, "Introduction to fluid Mechanics", John Wiley and Sons, 6th Edition 7. L, Wylie, E.B., "Fluid Mechanics", McGraw-Hill, 9th Edition, 1983.
Reference Bo	ooks:
	/, "Foundations of fluid Mechanics", Prentice-Hall, 2nd Edition, 1987.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Density, Specific weight, Specific gravity.	CLO 1	T2:1.2
3-4	Surface tension and capillarity	CLO 1	T2:1.6
5	Newton's law of viscosity	CLO 1	T2:1.3
6	Incompressible and compressible fluid, numerical problems.	CLO 1	T2:1.3
7	Hydrostatic forces on submerged bodies: Pressure at a point	CLO 2	T2:3.1
8	Pascal's law, pressure variation with temperature and height	CLO 2	T2:3.1
9-11	Center of pressure plane, vertical and inclined surfaces.	CLO 2	T2:3.2
12-13	Manometers: simple and differential Manometers	CLO 3	T2:2.5
14	Inverted manometers, micro manometers	CLO 3	T2:2.5
15-16	Pressure gauges and numerical problems. Buoyancy : Archimedes	CLO 3	T2:2.5
	principle		T2:4.2
17-18	Metacenter, meta centric height calculations.	CLO 3	T2:4.4
19	Stream line, path line, streak line, stream surface, stream tube	CLO 4	T2:5.2
20-21	Classification of flows, steady, unsteady, uniform, non- uniform, laminar, turbulent flows.	CLO 5	T2:5.3
22	One dimensional approximation, examples of real 1-D flows,	CLO 5	T2:5.3.6
23	two dimensional approximation, 2- D flow in wind tunnel	CLO 5	T2:5.3.6
24	Continuity equations for 1-D and 2-D flows both compressible and incompressible	CLO 5	T2 : 5.6
25	Stream function for two dimensional incompressible flows.	CLO 5	T2:5.6
26	Vortices, irrotational flow, velocity potential function.	CLO 4	T2:5.8
27-28	Basic laws for a system in integral form: Reynolds transport theorem	CLO 7	T2:5.9
29-30	Conservation of mass, Newton's 2nd law; Application of the basic laws for a control volume	CLO 6	T2 : 6.8
31-32	Kinematics; Motion of a fluid particle; Fluid deformation; Differential analysis of fluid motion	CLO 2	T2 : 5.9
33	Continuity equation	CLO 6	T2:5.6
34	Differential momentum equation, Surface and body forces	CLO 6	T2:6.8
35	Substantive derivative, local derivative and convective derivative,	CLO 6	T2:6.8
36	Momentum equation,	CLO 7	T2:6.3
37	Euler's and Bernoulli's equation.	CLO 7	T2:6.4
38-39	Phenomenological basis of Naviers- stokes equation, introduction to vortex flows.	CLO 7	T2:5.10
40	Flow measurements: pressure, velocity and mass flow rate, viscosity, pitot-static tube,	CLO 7	T2:6.7
41	Venturimeter and orifice meter, viscometers.	CLO 7	T2:6.7
42	Statement of Buckingham's π - theorem, similarity parameters. Reynolds number, Froude number	CLO 8	T2 : 12.4
43	Concepts Of geometric, kinematic and dynamic similarity	CLO 8	T2:12.6
44-45	Reynolds number as a very approximate measure of ratio of inertia force and viscous force	CLO 8	T2:12.8
46	Introductory concepts of boundary layer	CLO 9	T2:13.1
47	large Reynolds number flows and Prandtl's boundary layer hypothesis,	CLO 9	T2 :13.2 R3 : 10.5
48-49	Pressure drag and skin friction drag.	CLO 10	T2 : 13.3 R3 : 10.5

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
50	Reynolds experiment, Darcy's equation	CLO 11	T2:10.2
			R3:7.1
51-52	Major and minor losses in pipes and numerical problems.	CLO 11	T2:11.4
			R3:7.2
53	Exact Solutions of Naviers Stokes Equations.	CLO 6	T2:6.9
54	Flow between parallel plates, flow through long tubes -fully	CLO 11	T2:11.9
	developed flow		R3:10.2
55-56	Turbulent flow, variation of friction factor with Reynolds's Number	CLO 12	T2:10.1
			R3:10.5
57	Moody's chart	CLO 13	T2:11.4.7
58-59	Introduction and classification of fluid machines:	CLO 14	T2:18.1
60	Turbo machinery analysis; The angular momentum principle;	CLO 14	T2:18.3
61-62	Euler turbo machine equation; Velocity triangles;	CLO 15	T2:18.6
63-64	Application to fluid systems - Working principle overview of turbines, fans, pumps and compressors.	CLO 15	T2:18.4

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Experimental determination of buoyancy	Seminars	PO 1, PO 2, PO 5	PSO 2
2	Introduction to vortex flows- forced and free vortex flows	Seminars / NPTEL	PO 1, PO 2, PO 5	PSO 3
3	Velocity triangles determination	NPTEL	PO 2, PO 3, PO 4	PSO 3

Prepared by: Mr. G Satya Dileep, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING					
Course Code	AEE018	AEE018				
Programme	B. Tech	B. Tech				
Semester	III AE	III AE CE ME				
Course Type	Foundation					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Chief Coordinator	Mr. N Shivaprasad, Assistant Professor					
Course Faculty	Mr. N Shivaprasad, Assistant Professor Mr. S Srikanth, Assistant Professor Mr. B Muralidhar Nayak, Assistant Professor Ms. B Manogna, Assistant Professor Ms. B Navothna, Assistant Professor					

I. COURSE OVERVIEW:

Electrical and Electronics Engineering course deals with the concepts of electrical circuits, basic law's of electricity, different methods to solve the electrical networks and the instruments to measure the electrical quantities. It also focuses on the construction, operational features of energy conversion devices such as DC and AC machines, Transformers. It also emphasis on basic electronics semiconductor devices and their characteristics and operational features.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Basic Electrical and Electronics Engineering	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	7	Seminars	×	Mini Project	~	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Seminar
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Five Minutes Video
PO4	Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignment

3 = **High; 2** = **Medium; 1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO1	Professional skills: Able to utilize the knowledge of	1	Seminar
	aeronautical/aerospace engineering in innovative, dynamic and		
	challenging environment for design and development of new		
	products		
PSO2	Professional skills: Imparted through simulation language	-	-
	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles		
PSO3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice to		
	fabricate and test and develop the products with more		
	innovative technologies		
PSO4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:						
Ι	Understand Kirchhoff laws and their application in series and parallel circuits.						
II	Discuss principle and operation of measuring instruments.						
III	Analyze the characteristics of alternating quantities, electrical machines.						
IV	Illustrate the V-I characteristics of various diodes and bi-polar junction transistor.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEE018.01	CLO 1	Analyze the circuits using Kirchhoff's current and Kirchhoff's voltage law.	PO1	3
AEE018.02	CLO 2	Use star delta transformation for simplifying complex circuits.	PO1	3

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AEE018.03	CLO 3	Generalize operation and principle of measuring instruments.	PO2	3
AEE018.04	CLO 4	Demonstrate the working principle of DC motor, DC generator and transformer.	PO2	3
AEE018.05	CLO 5	Describe the construction of machines and transformer.	PO2	2
AEE018.06	CLO 6	Classify the types of DC machines.	PO2	2
AEE018.07	CLO 7	Derive the EMF equation of DC generator, transformer and Torque equation of DC motor.	PO2	2
AEE018.08	CLO 8	Discuss the principle of operation of induction motor.	PO2	2
AEE018.09	CLO 9	Explain the construction and characteristics of alternator.	PO4	2
AEE018.10	CLO 10	Explain the construction and characteristics of 3-phase induction motor.	PO2	1
AEE018.11	CLO 11	Compare the operation of half wave, full wave and bridge rectifiers.	PO4	2
AEE018.12	CLO 12	Differentiate the operation of Diodes and transistors.	PO2	2
AEE018.13	CLO 13	Apply the concept of diodes in converting AC to DC rectification process.	PO1	2
AEE018.14	CLO 14	Distinguish the different configurations of transistor.	PO4	2
AEE018.15	CLO 15	Examine the voltage, current and frequency of electric network using CRO.	PO1	3
AEE018.16	CLO 16	Apply the knowledge of electromagnetic laws and basic concepts of electronics.	PO2	3
AEE018.17	CLO 17	Process the knowledge and skills for employability and to succeed national and international level competitive examinations.	PO2	3

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3	3														
CLO 2																
CLO 3		3											1			
CLO 4		3											1			
CLO 5		2											1			
CLO 6		2											1			
CLO 7		2											1			
CLO 8		2											1			

CLOs		Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 9				2												
CLO 10		1											1			
CLO 11				2									1			
CLO 12		2											1			
CLO 13	2															
CLO 14				2												
CLO 15	3															
CLO 16		3														
CLO 17		3														
	2 1	ТТ• 1	2 - 1			і 1 т										

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO2, PO4	SEE Exams	PO1,PO2 PO4	Assignments	PO4	Seminars	PO1
Laboratory Practices	PO1	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT -I	ELECTRICCIRCUITS, ELECTROMAGNETISM AND INSTRUMENTS	Classes: 10						
networks, ca simple prob	Electrical Circuits: Basic definitions, types of elements, Ohm's Law, resistive networks, inductive networks, capacitive networks, Kirchhoff's Laws, series, parallel circuits and star delta transformations, simple problems, Faradays law of electromagnetic induction; Instruments: Basic principles of indicating instruments, permanent magnet moving coil and moving iron instruments.							
UNIT -II	DC MACHINES	Classes: 10						
	es: Principle of operation of DC generator, EMF equation, principle of opue equation, types of DC machines, applications, three point starter.	peration of DC						
UNIT -III	ALTERNATING QUANTITIES AND AC MACHINES	Classes: 08						
Alternating Quantities: Sinusoidal AC voltage, average and RMS values, form and peak factor, concept of three phase alternating quantity; Transformer: Principle of operation, EMF equation, losses,								

efficiency and regulation. Three Phase Induction Motor: Principle of operation, slip, slip torque characteristics, efficiency, applications; Alternator: Principle of operation, EMF Equation, efficiency, regulation by synchronous impedance method. **UNIT-IV** SEMICONDUCTOR DIODE AND APPLICATIONS Classes: 09 Semiconductor Diode: P-N Junction diode, symbol, V-I characteristics, half wave rectifier, full wave rectifier, bridge rectifier and filters, diode as a switch, Zener diode as a voltage regulator. Classes: 08 **UNIT-V BIPOLAR JUNCTION TRANSISTOR AND APPLICATIONS** Bipolar junction: DC characteristics, CE, CB, CC configurations, biasing, load line, transistor as an amplifier. **Text Books:** 1. A Chakrabarti, "Circuit Theory", Dhanpat Rai Publications, 6th Edition, 2004. 2. K S Suresh Kumar, "Electric Circuit Analysis", Pearson Education, 1st Edition, 2013. Willianm Hayt, Jack E Kemmerly S M Durbin, "Engineering Circuit Analysis", Tata McGraw 3 Hill, 7th Edition, 2010. 4. J P J Millman, C C Halkias, Satyabrata Jit, "Millman"s Electronic Devices and Circuits", Tata McGraw Hill, 2nd Edition, 1998. 5. R L Boylestad, Louis Nashelsky, "Electronic Devices and Circuits", PEI / PHI, 9th Edition, 2006. 6. R L Boylestad, Louis Nashelsky, "Electronic Devices and Circuits", PEI / PHI, 9th Edition, 2006. **Reference Books:** 1. David A Bell, "Electric Circuits", Oxford University Press, 9th Edition, 2016. 2. U A Bakshi, Atul P Godse "Basic Electrical and Electronics Engineering", Technical Publications, 9th Edition, 2016. 3. A Bruce Carlson, "Circuits", Cengage Learning, 1st Edition, 2008.

4. M Arshad, "Network Analysis and Circuits", Infinity Science Press, 9th Edition, 2016.

XIV.COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Discuss the basic definitions of voltage, current, power and energy	CLO 1	T2: 1.2-1.8 R2:1.1
2	Understand the concept of Ohm's Law	CLO 1	T2: 1.9 R2:1.5
3	Discuss different elements in power systems and sources	CLO 1	T2:1.10 R2:1.2&1.4
4-5	Describe voltage-current relationship of resistive networks, inductive networks, capacitive networks	CLO 1	T2: 2.3-2.5 R2:1.6
6	Explain Kirchhoff's laws for electrical networks	CLO 1	T2: 1.12 R2:1.14
7-8	Understand series, parallel circuits	CLO 1	T2: 2.6 R2:1.7&1.8
9	Derive the formula for Star delta and delta star transformations techniques.	CLO 2	T2: 2.7 R2:1.12
10	Analyze networks using reduction techniques.	CLO 2	T2: 2.6 R2:1.7&1.8
11	Understand the concept of faradays laws	CLO 3	T2: 1.11 R2:6.2

Lecture	Topics to be covered	Course	Reference
No		Learning Outcomes (CLOs)	
12	Understand working of different measuring instruments	CLO 3	T2: 10.4 R2:4.0
13-14	Understand working of different measuring instruments	CLO 3	T2: 10.5.1.1 R2:4.0
15-16	Understand working of different measuring instruments	CLO 3	T2: 10.5.1.3 R2:4.0
17	Discuss what is a DC machine	CLO 4	T2: 7.1 R2:5.2
18	Understand the working principle of DC machine	CLO 4	T2: 7.6 R2:5.3
19-20	Demonstrate the cross section view of a DC machine	CLO 5	T2: 7.2 R2:5.4
21-22	Derive the mathematical equation of EMF induced in a DC generator	CLO 7	T2: 7.6.1 R2:5.7
23	Classify the types of DC generator	CLO 6	T2: 7.6.3 R2:5.10,5.11,5.12 ,5.13,5.14
24	Understand the working principle of DC motor	CLO 4	T2: 7.7 R2:5.16
25	Classify the types of DC motor	CLO 6	T2: 7.7.6 R2:5.21,5.22,5.23 ,5.24
26	Derive mathematical equation of torque generated in a DC motor	CLO 7	T2:7.7.5 R2:5.20
27	Understand the applications of DC motor	CLO 4	T2: 7.7.6.1- 7.7.6.3 R2:5.31
28	Understand the three point starter	CLO 4	T2: 7.7.7 R2:5.25
29	Understand the concepts of alternating quantities	CLO 4	T2: 4.1 R2:2.1
30	Understand the representation of sinusoidal quantity and analyzing	CLO 4	T2: 4.5-4.6 R2:2.2
31	Understand three phase systems	CLO 4	T2: 5.2.4.1- 5.2.4.2 R2:3.2
32	Understand the working principle of Transformer	CLO 4	T2: 6.5 R2:602
33	Derive mathematical equation of EMF induced in a single phase transformer	CLO 7	T2: 6.6.1 R2:6.6
34-35	Understand the percentage efficiency and voltage regulation	CLO 7	T2: 6.9-6.10 R2:6.13&6.15
36	Understand the working principle of induction motor	CLO 8	T2: 9.3 R2:7.2
37	Analyze the speed torque characteristics	CLO 9	T2: 9.3.1 R2:7.8
38	Understand the working principle of Alternator	CLO 9	T2: 8.4 R2:7.11
39-40	Derive the mathematical equation of EMF induced in a Alternator	CLO 9	T2: 8.4 R2:7.13
41-42	Analyze the percentage efficiency of an alternator.	CLO 9	T2: 8.8 R2:7.16
42-43	Analyze the percentage voltage regulation of alternator.	CLO 9	T2: 8.8 R2:7.21

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
44-47	Understand the functioning of P-N Junction diode	CLO 12	T4: 4.11 R2:8.1
48–50	Understand and analyze P -N diode as half wave rectifier, full wave rectifier, bridge rectifier and filters	CLO 11	T4: 4.23 R2:8.8,8.17,8.18, 8.19
51-53	Understand the functioning of Zener diode as a voltage regulator.	CLO 12	T4: 4.19,5.2 R2:8.22.5
54	Analyze simple problems on diodes.	CLO 12	T4: 4.23 R2:8.23
55-56	Understand the concept of bipolar junction: DC characteristics,	CLO 14	T4: 6.4-6.5 R2:9.1
57-59	Examine CE, CB, CC configurations.	CLO 14	T4: 6.6 R2:9.21,9.22,9.23
60	Analyze biasing and load line,	CLO 14	T4: 6.3 R2:9.3
61-63	Model Transistor as an amplifier	CLO 14	T4: 6.7 R2:9.5
64-65	Analyze simple problems on transistors.	CLO 14	T4: 6.6 R2:9.7

XV.GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Guest lectures	PO2	PSO1
2	Voltage - Current relationship for passive elements for different inpu signals - ramp, saw tooth and triangular.		PO1	PSO1
3	Resistance color coding	NPTEL	PO1	PSO1

Prepared by: Mr. N Shivaprasad Assistant Professor

HOD, AE

TITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	MATI	MATHEMATICAL TRANSFORM TECHNIQUES					
Course Code	AHS0	AHS011					
Programme	B.Tech	l					
	II	EEF	Ξ				
Semester	III	AE	ECE				
	IV	IV ME CE					
Course Type	Founda	ation					
Regulation	IARE -	• R16					
		Theory			Practical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	-	-	
Chief Coordinator	Ms.P R	Ms.P Rajani ,Assistant Professor, FE					
Course Faculty	Dr. S Jagadha, Associate Professor, FE Ms. L Indira, Associate Professor, FE Mr.J Suresh Goud, Associate Professor, FE Ms.C Rachana, Assistant Professor, FE						

I. COURSE OVERVIEW:

The course focuses on more advanced engineering mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes types of matrices, difference calculus methods and differential equations. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Basic principles of integration

2000

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Mathematical Transform Techniques	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
V	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component		Total Marka	
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Strength	Proficiency assessed by
3	Presentation on
	real-world
	problems
2	Seminar
2	Term Paper
	2

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
	Professional skills: Able to utilize the knowledge of	1	Seminar
	aeronautical/aerospace engineering in innovative, dynamic and		
	challenging environment for design and development of new		
1	products		
PSO 2	Problemsolving skills:Imparted through simulation language	-	-
:	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles.		
	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice to		
ţ	fabricate and test and develop the products with more		
j	innovative technologies		
PSO 4	Successful Career And Entrepreneurship: To Prepare The	-	-
;	Students With Broad Aerospace Knowledge To Design And		
]	Develop Systems And Subsystems Of Aerospace And Allied		
;	Systems And Become Technocrats		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:				
Ι	Epress non periodic function to periodic function using Fourier series and Fourier transforms.				
II	Apply Laplace transforms and Z-transforms to solve differential equations.				
III	Formulate and solve partial differential equations.				

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS011.01	CLO 1	Ability to compute the Fourier series of the	PO 1	3
	0201	function with one variable.	101	5
AHS011.02	CLO 2	Understand the nature of the Fourier series	PO 1	3
AIIS011.02	CLO 2		101	5
110011.02	CL O O	that represent even and odd functions.	DO 1	
AHS011.03	CLO 3	Determine Half- range Fourier sine and	PO 1	2
		cosine expansions.		
AHS011.04	CLO 4	Understand the concept of Fourier series to	PO 2	1
		the real-world problems of signal processing		
AHS011.05	CLO 5	Understand the nature of the Fourier integral.	PO 2	2
AHS011.06	CLO 6	Ability to compute the Fourier transforms of	PO 2	2
		the function.		
AHS011.07	CLO 7	Evaluate finite and infinite Fourier	PO 4	1
		transforms.		
AHS011.08	CLO 8	Understand the concept of Fourier transforms	PO 2	3
	020 0	to the real-world problems of circuit analysis,	102	C
		control system design		
AHS011.09	CLO 9	Solving Laplace transforms using integrals.	PO 2	1
AHS01110	CL0 10	Evaluate inverse of Laplace transforms by the	PO 2	2
Ansonno		method of convolution.	FO 2	2
AUCO11 11	CL 0 11		DO 1	2
AHS011.11	CLO 11	Solving the linear differential equations using	PO 1	3
		Laplace transform.		
AHS011.12	CLO 12	summarize the concept of Laplace transforms	PO 1	3
		to the real-world problems of electrical		
		circuits, harmonic oscillators, optical devices,		
		and mechanical systems		
AHS011.13	CLO 13	Apply Z-transforms for discrete functions.	PO 1	3
AHS011.14	CLO 14	Evaluate inverse of Z-transforms using the	PO 1,	3
		methods of partial fractions and convolution	PO 2	
		method.		
AHS011.15	CLO 15	Apply Z-transforms to solve the difference	PO 2	3
		equations.	-	_
AHS011.16	CLO 16	Understand the concept of Z-transforms to	PO 2	2
11110011110	02010	the real-world problems of automatic controls	102	-
		in telecommunication.		
AHS011.17	CLO 17	Understand partial differential equation for	PO 1,	3
AII5011.17	CLO I/			5
AUCO11 10	CLO 19	solving linear equations by Lagrange method.	PO 2	3
AHS011.18	CLO 18	Apply the partial differential equation for	PO 1,	5
		solving non-linear equations by Charpit's	PO 2	
	GL 0.10	method.		
AHS011.19	CLO 19	Solving the heat equation and wave equation	PO 1,	3
		in subject to boundary conditions.	PO 2	
AHS011.20	CLO 20	Summarize the concept of partial differential	PO 1,	3
		equations to the real-world problems of	PO 2	
		electromagnetic and fluid dynamics		
AHS011.21	CLO 21	Possess the knowledge and skills for	PO 1	3
		employability and to succeed in national and		
		employability and to succeed in national and	1	

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PO12	PSO1	PSO2	PSO3			
CLO 1	3												1		
CLO 2	3												1		
CLO 3	2												1		
CLO 4		1													
CLO 5		2													
CLO 6		2													
CLO 7				1											
CLO 8				3											
CLO 9		1											1		
CLO 10		2											1		
CLO 11	3														
CLO 12	3														
CLO 13	3														
CLO 14	3	2											1		
CLO 15		3													
CLO 16		2													
CLO 17	3	3											1		
CLO 18	3	3											1		
CLO 19	2	3											1		
CLO 20	3	2											1		
CLO 21	3					Low									

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO 4	SEE Exams	PO 1, PO 2, PO 4	Assignments	PO 1, PO 2, PO 4	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	FOURIER SERIES
	periodic function, determination of Fourier coefficients; Fourier expansion of periodic
	given interval of length 2π ; Fourier series of even and odd functions; Fourier series in an
	val; Half- range Fourier sine and cosine expansions.
UNIT-II	FOURIER TRANSFORMS
Fourier integr	al theorem, Fourier sine and cosine integrals; Fourier transforms; Fourier sine and cosine
	perties, inverse transforms, finite Fourier transforms.
UNIT-III	LAPLACE TRANSFORMS
Definition of I	Laplace transform, linearity property, piecewise continuous function, existence of Laplace
transform, fu	nction of exponential order, first and second shifting theorems, change of scale property,
	forms of derivatives and integrals, multiplied by t, divided by t, Laplace transform of
	ce transform: Definition of Inverse Laplace transform, linearity property, first and second
Inverse Lapla	
Inverse Laplace shifting theore	ce transform: Definition of Inverse Laplace transform, linearity property, first and second
Inverse Laplae shifting theore applications. UNIT-IV	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and
Inverse Laplae shifting theore applications. UNIT-IV	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z - TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution of
Inverse Laplad shifting theory applications. UNIT-IV Z-transforms:	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z - TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution of
Inverse Laplay shifting theory applications. UNIT-IV Z-transforms: difference equ UNIT-V	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z-TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution of ations.
Inverse Laplay shifting theory applications. UNIT-IV Z-transforms: difference equ UNIT-V Formation of	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z-TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution of ations. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS
Inverse Laplac shifting theory applications. UNIT-IV Z-transforms: difference equ UNIT-V Formation of solutions of fi	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z-TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution of ations. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS partial differential equations by elimination of arbitrary constants and arbitrary functions,
Inverse Laplac shifting theory applications. UNIT-IV Z-transforms: difference equ UNIT-V Formation of solutions of fi	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z-TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution of ations. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS partial differential equations by elimination of arbitrary constants and arbitrary functions, rst order linear equation by Lagrange method; Charpit's method; method of separation of e dimensional heat and wave equations under initial and boundary conditions.
Inverse Laplad shifting theore applications. UNIT-IV Z-transforms: difference equ UNIT-V Formation of solutions of fivariables; One TEXT BOOH 1. Kreyszig,	ce transform: Definition of Inverse Laplace transform, linearity property, first and second ems, change of scale property, multiplied by s, divided by s; Convolution theorem and Z-TRANSFORMS Elementary properties, inverse Z-transform, convolution theorem, formation and solution or ations. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS partial differential equations by elimination of arbitrary constants and arbitrary functions, rst order linear equation by Lagrange method; Charpit's method; method of separation of e dimensional heat and wave equations under initial and boundary conditions.

REFERENCES:

1. G. Shanker Rao, "Mathematical Methods", I. K. International Publications, 1st Edition, 2009.

2. G. Shanker Rao, "Engineering Mathematics-1", I. K. International Publications, 1st Edition, 2009.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Define periodic function	CLO 1	T1:22.5
			R1:2.3
2	Solve Fourier coefficients	CLO 2	T1:22.5
			R1:2.4
3	Apply Fourier series for $(0, 2\pi)$	CLO 2	T1:22.6
			R1:2.6
4-5	Determine even and odd function	CLO 4	T1:22.7
			R1:4.4
6-7	Determine Fourier series in $(0,2l)$, $(-l,l)$ and also half range series	CLO 4	T1:22.7
	in (0, <i>l</i>)		R1:4.10
8-9	Determine half range series in $(0, \pi)$	CLO 7	T1:22.8
			R1:4.15

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
10	Apply Fourier integral theorem to find integrals	CLO 9	T1:22.9 R1:5.4
11	Apply Fourier sine and cosine integrals to find integrals	CLO 9	T1:22.9 R1:5.8
12-13	Define and apply Fourier transforms	CLO 11	T1:23.10 R1:6.8
14	Use properties to solve the given functions	CLO 11	T1:23.10 R1:6.13
15-16	Define and apply Inverse transforms	CLO 13	T1:23.9 R1:7.5
17	Define and apply Finite Fourier transforms	CLO 11	T1:23.10 R1:7.5
18	Define Laplace transform and its property	CLO 9	T1:23.10 R1:8.1
19	Define piecewise continuous function	CLO 14	T1:23.1 R1:9.2
20	Define and apply shifting theorem, change of scale property	CLO 14	T1:23.1 R1:9.4
21	Solve derivatives and integrals, multiplied by t, divided by t	CLO 14	T1:23.1 R1:9.9
22-23	Define periodic functions	CLO 14	T1:23.1 R1:9.10
24-25	Solve Inverse Laplace transform	CLO 14	T2:27.5 R1:10.2
26	Define and apply shifting theorem, change of scale property	CLO 17	T2:27.7 R1:11.3
27	Solve multiplied by s, divided by s	CLO 17	T2:27.8 R1:11.6
28-30	Define and apply Convolution theorem	CLO 19	T2:27.12 R1:11.7
31-32	Define Z-transforms, Elementary properties	CLO 19	T2:27.12 R1:11.8
33-34	Define inverse Z-transform	CLO 20	T2:27.12 R1:11.9
35-36	Define and apply convolution theorem	CLO 20	T2:27.12 R1:11.10
37-38	Formulate partial differential equations	CLO 21	T2:27.14 R1:12.3
39	Solve by lagrange's method	CLO 22	T2:27.1 R1:12.7
40-41	Solve by Charpit's method	CLO 23	T2:27.17 R1:12.15
42	Apply method of separation of variables	CLO 23	T2:18.2 R1:13.1
43-45	Solve heat and wave equations	CLO 23	T2:18.3- 18.5 R1:13.2, 13.3

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed Actions	Relevance with Pos	Relevance with Psos
1	Problem deduction, Initial and	Seminars	PO 1	PSO 1
	Boundary value problems			
2	Fourier Integral Transforms, Convolution theorem in Fourier Transforms, Higher order difference equations	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to identify the type of transform involved in industry	NPTEL	PO 2	PSO 1

Prepared by:

Ms . P Rajani, Assistant Professor, FE

HOD,AERO

IV SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	LOWSPEED AERODYNAMICS								
Course Code	AAE004								
Programme	B.Tech								
Semester	IV	IV AE							
Course Type	Core								
Regulation	IARE - R16								
			Theory		Practic	cal			
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits			
	3		1	4	3	2			
Chief Coordinator	Dr. Maru	thu	pandiyan K, Ass	ociate Professo	r				
Course Faculty			pandiyan K, Ass nanata, Associate		r				

I. COURSE OVERVIEW:

Aerodynamics extends fluid mechanic concepts to the aerodynamic performance of wings and bodies in sub/supersonic regimes. The course has four components: (i) subsonic potential flows, including source/vortex panel methods; (ii) viscous flows, including laminar and turbulent boundary layers; (iii) aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; (iv) introduction to propeller. Aerodynamics is the study of the flow of air about a body. In this case, the body will be an airplane, but much of the aerodynamics in this course is relevant to a wide variety of applications from sail boats to automobiles to birds. The course should help students to: formulate and apply appropriate aerodynamic models to predict the forces on and performance of realistic three-dimensional configurations; assess the applicability of aerodynamic models to predict the forces on and performance of realistic three-dimensional configuration; perform a computational and experimental aerodynamic analysis and design.

Level	Course Code	Nomostor		Credit s
UG	AHS007	Ι	Applied physics	4
UG	AAE102	III	Fluid Mechanics and Hydraulics	4

II. COURSE PRE-REQUISITES:

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Low Speed Aerodynamics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	✓ Assignments		×	MOOCs				
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos				
×	Open Ended Experiments										

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into fiveunits and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Manha	
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Presentation on real-world problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Designing
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. 3 – High: 2 – Medium: 1 – Low	1	Assignments

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional skills: Able to utilize the knowledge of	1	Seminar
	aeronautical/aerospace engineering in innovative,		
	dynamic and challenging environment for design and		
	development of new products		
PSO 2	Problem solving skills: imparted through simulation	2	Tutorials
F30 2	language skills and general purpose CAE packages to		
	solve practical, design and analysis problems of		
	components to complete the challenge of		
	airworthiness for flight vehicles		
PSO 3	Practical implementation and testing skills:	3	Mini project
	Providing different types of in house and training and		
	industry practice to fabricate and test and develop the		
	products with more innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare		
	the students with broad aerospace knowledge to design	-	-
	and develop systems and subsystems of aerospace and		
	allied systems and become technocrats		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:					
Ι	Understand the basics of aerodynamics, aerofoil and wing characteristics					
II	Calculate forces and moments acting on aero foils and wings under ideal flow conditions.					
III	Design a propeller and determine aerodynamic interaction effects between different components of aircraft.					

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
CAAE004.01	CLO 1	Apply knowledge and understand the essential facts, concepts and principles of aerodynamics.	PO 1	3
CAAE004.02	CLO 2	Adapt the basic knowledge of mathematics, science and engineering for problem solving.	PO 1	3
CAAE004.03	CLO 3	Describe principles of physics and aerodynamics to study the wing-body interference junction.	PO 1	3
CAAE004.04	CLO 4	Explain the concept of boundary layer flows to increase the performance of the body.	PO 2	2
CAAE004.05	CLO 5	Understand the concept of source, sink, doublet and vortex.	PO 3	3
CAAE004.06	CLO 6	Demonstrate importance of aerodynamics to develop effective aircraft design and operations.	PO 2	2
CAAE004.07	CLO 7	Apply the concept of lifting line theory to study potential flows over different aerofoils.	PO 4	1
CAAE004.08	CLO 8	Identify the elliptic load distribution for obtaining high lift performance on finite wings.	PO 2, PO 4	2
CAAE004.09	CLO 9	Evaluate the source and vortex panel method for non- lifting and lifting aerofoils.	PO 3	3
CAAE004.10	CLO 10	Illustrate the propeller aerodynamics and the effects of propeller on the wing.	PO 2	2
CAAE004.11	CLO 11	Understand the concept of Prandtl's lifting line theory and eliptical lift distribution.	PO 1, PO 2	2
CAAE004.12	CLO 12	Understand the lift augmentation techniques for high- lift devices and slats.	PO 1	3
CAAE004.13	CLO 13	Understand aerodynamic effect of taper and twist applied to wings.	PO 2	2
CAAE004.14	CLO 14	Apply temperature effects on boundary layer, transition and turbulent flow regimes.	PO 1, PO 3	2
CAAE004.15	CLO 15	Understand the aerodynamic effect of vortex formation around wings.	PO 2	2
CAAE004.16	CLO 16		PO 2	2
CAAE004.17	CLO 17	Understand the effect of sweep in the context of delta wings.	PO 1, PO 2	2
CAAE004.18	CLO 18	Understand the relation between circulation and lift.	PO 1, PO 3	3
CAAE004.19	CLO 19	Understand the various sources of drag including induced drag and skin friction drag.	PO 1, PO 2	2
CAAE004.20	CLO 20		PO 2, PO 4	2

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
Outcome s (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2	3												1		
CLO 3	3												1		3
CLO 4		2													
CLO 5			3												3
CLO 6		2													
CLO 7				1											
CLO 8		2		1										2	
CLO 9			3										1	2	3
CLO 10		2													
CLO 11	3	2													
CLO 12	3														3
CLO 13		2													
CLO 14	3		3										1	2	
CLO 15		2													
CLO 16		2												2	
CLO 17	3	2											1		
CLO 18	3		3												
CLO 19	3	2											1		3
CLO 20		2		2										2	

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

	PO 1, PO 2PO 3, PO 4	SEE Exams	PO 1, PO 2PO 3, PO 4	Assignments	PO 1, PO 2	Seminars	PO 2
Laboratory Practices	PO2, PO 3PO 4	Student Viva	-	Mini Project	PO 3	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	INTRODUCTORY TOPICS FOR AERODYNAMICS
	low, velocity potential, stream function, Laplace equation, flow singularities-Uniform flow, k, doublet, Vortex, Non lifting and lifting flow over a cylinder Kutta-Joukowski theorem.
UNIT -II	THIN AEROFOIL THEORY
infinite asp	be be been been been been been been bee
UNIT-III	FINITE WING THEORY
BiotSavart	tions, vortex line, vortex tube, vortex sheet; Circulation; Kelvin and Helmhotz theorem; 's law, applications, Rankine's vortex; Flow past finite wings, vortex model of the wing vortices; Induced drag; Prandtl's lifting line theory; Elliptic wing.
	of taper and twist applied to wings, effect of sweep back wings; Delta wings, primary and vortex; Elements of lifting surface theory. Source Panel Vortex panel and Vortex lattice
UNIT-IV	FLOW PAST NON-LIFTING BODIES AND INTERFERENCE EFFECTS
-	non lifting bodies, method of singularities; Wing-body interference; Effect of propeller on bodies and tail unit; Flow over airplane as awhole.
UNIT-V	BOUNDARY LAYER THEORY
	n to boundary layer, laminar and turbulent boundary layer, transition, boundary layer on flat accement thickness, momentum thickness, energy thickness, effect of curvature, temperature ayer.
Text Book	s:
2. E. L. H Publish	derson, "Fundamentals of Aerodynamics", McGraw-Hill publications, 5 th Edition, 2011. oughton and P.W. Carpenter, "Aerodynamics for Engineering Students", Edward Arnold ers Ltd., London, 5th Edition, 1982. Bertin and Russell M. Cummings, "Aerodynamics for Engineering Students", Pearson,5 th , 2009.
Reference	Books:
2. Louis N	ancy, "Aerodynamics", Pitman, 1 st Edition, 1986. <i>A</i> . Milne, "Thomson, Theoretical Aerodynamics", 2 nd Edition, Dover Publications, 1985. amcheti, "Principles of Ideal-fluid Aerodynamics", 2 nd Edition, Krieger Publication &Co 2 nd

3. K. Karamcheti, "Principles of Ideal-fluid Aerodynamics", 2nd Edition, Krieger Publication &Co; 2nd Edition, 1980.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Discuss Importance of Aerodynamics	CLO 1	T1:1.1
2	Define potential flow, velocity potential and stream function	CLO 2	T1:2.4-2.15
3	Derive Laplace equation	CLO 2	T1:2.15
4	Discuss flow singularities	CLO 3	T1:3.9-3.15
5	Discuss uniform flow, source, sink	CLO 5	T1:3.11
6	Discuss doublet, Vortex	CLO 5	T1:3.12-3.14
7	Discuss non-lifting flow over a cylinder	CLO 6	T1:3.13
8	Discuss lifting flow over a cylinder	CLO 6	T1:3.15
9	Derive Kutta-Joukowski theorem	CLO 7	T1:3.16
10	Discuss aerofoil nomenclature	CLO 8	T1:4.2
11	Discuss aerodynamic characteristics	CLO 9	T1:4.3
12	Explain centre of pressure, aerodynamic centre and wing of infinite aspect ratio	CLO 11	T1:1.6-4.9
13	Discuss $CL-\alpha$ - diagram for a wing of infinite aspect ratio, generation of lift	CLO 11	T1:4.7
14	Discuss starting Vortex, Kutta's trailing edge condition	CLO 11	T1:4.5-4.6
15	Discuss thin aerofoil theory	CLO 12	T1:4.7- 4.10
16-17	Discuss elements of panel method	CLO 9	T1:4.10
18	Discuss high lift airfoils, High lift devices	CLO 12	T1:4.12
19	Discuss vortex motions, vortex line, vortex tube, vortex sheet	CLO 15	T1:5.2
20	Discuss Circulation; Kelvin and Helmhotz theorem	CLO 15	T1:4.6
21	vortices; induced drag Discuss Biot-Savart's law, applications, Rankine's vortex	CLO 15	T1:5.2
22	Discuss flow past finite wings, vortex model of the wing and bound vortices; induced drag	CLO 15	T1:5.3
23-24	Discuss Prandtl's lifting line theory; Elliptic wing	CLO 11	T1:5.3
25	Discuss influence of taper and twist applied to wings, effect of sweep back wings	CLO 13	T1:5.4
26	Discuss delta wings, primary and secondary vortex	CLO 13	T1:5.6
27	Discuss elements of lifting surface theory	CLO 11	T1:5.5

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
28	Discuss Source Panel method	CLO 09	T1:5.4
29	Discuss Vortex Panel method	CLO 09	T1:5.4
30	Discuss Vortex Lattice method	CLO 09	T1:5.5
31	Describe flow past non lifting bodies	CLO 16	T1:5.4
32-33	Discuss method of singularities	CLO 16	T1:5.3
34	Discuss Wing-body interference	CLO 03	T3:5.2
35-37	Discuss effect of propeller on wings and bodies and tail unit	CLO 10	T2:7.1
38	Discuss flow over airplane as a whole	CLO 03	T3:6.2
39-41	Discuss boundary layer	CLO 04	T1:17.1
42-43	Explain laminar and turbulent boundary layer, transition	CLO 04	T1:18.1- 19.1
44-47	Discuss boundary layer on flat plate	CLO 04	T1:18.2
48-52	Discuss displacement thickness, momentum thickness, energy thickness	CLO 20	T1:17.3
53-56	Discuss effect of curvature	CLO 20	T1:17.5
57-60	Explain temperature boundary layer	CLO 20	T1:19.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	Application of knowledge and skills in the aerodynamic design of a new aircraft	Seminars / Guest Lectures / NPTEL	PO 4,	PSO 3
2	Broad knowledge of aerodynamic studies for various aerofoils and wings currently in use	Seminars / Guest Lectures / NPTEL	PO 4,	PSO 3

Prepared by:

Dr. Maruthupandiyan K , Associate Professor

HOD, AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AIRCRAF	AIRCRAFT MATERIALS AND PRODUCTION									
Course Code	AAE005	AAE005									
Programme	B.Tech										
Semester	IV AE										
Course Type	Core										
Regulation	IARE - R16										
	Theory Practical										
			Theory		Tacuca	1					
Course Structure	Lectu	ıres	Tutorials	Credits	Laboratory	Credits					
Course Structure	Lectu 3		-	Credits 4							
Course Structure Chief Coordinator			Tutorials 1		Laboratory	Credits					

I. COURSE OVERVIEW:

Production engineering is a combination of manufacturing technology with management science. The goal is to accomplish the production process in the smoothest, most-judicious and most-economic way. Production engineering encompasses the application of castings, machining processing, joining processes, metal cutting & tool design, metrology, machine tools, machining systems, automation, jigs and fixtures, and dies and mould design and material science and design of automobile parts and machine designing and manufacturing. Production engineering also overlaps substantially with manufacturing engineering and industrial engineering. In industry, once the design is realized, production engineering concepts regarding work-study, ergonomics, operation research, manufacturing management, materials management, production planning, etc., play important roles in efficient production processes. These deal with integrated design and efficient planning of the entire manufacturing system, which is becoming increasingly complex with the emergence of sophisticated production methods and control systems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS005	1	Engineering Chemistry	4
UG	AHS007	Ι	Applied Physics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Aircraft Materials and Production	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs			
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos			
×	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.									
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.									

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	I OLAI IVIAIKS
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminars
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Micro Projects
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Assignments, Practical's

3 = **High; 2** = **Medium; 1** = **Low**

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	1	Lecture, Assignments.
	aeronautical/aerospace engineering in innovative, dynamic		
	and challenging environment for design and development of		
	new products		
PSO 2	Problem solving skills: imparted through simulation	-	-
	language skills and general purpose CAE packages to solve		
	practical, design and analysis problems of components to		
	complete the challenge of airworthiness for flight vehicles		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice		
	to fabricate and test and develop the products with more		
	innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course	The course should enable the students to:								
Ι	Understand about traditional engineering materials like steel and iron material behavior, and to								
	know the enhancement of material properties using heat treatment.								
II	Remember the technical areas of aerospace engineering production techniques using casting,								
	different types of casting processes used in aircraft production.								
III	Understand methodology and experience of welding techniques and inspection of welding area								
	s using NDT.								
IV	Achieve basic engineering production techniques using lathe and various operations such as								
	plane turning, threading, tapering and drilling.								
V	Demonstrate knowledge in advancement in material production giving an example of								
	composites and discuss the importance and applications of composites in aircraft industry.								

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	Code CLO's the ability to:				
AAE005.01	CLO 1	Understand the different phases of iron carbon diagram for manufacturing the different materials with different carbon content.	PO1	3	
AAE005.02	CLO 2	Study different material properties and process of heat treatments- annealing, normalizing, hardening and tempering.	PO1	2	
AAE005.03	CLO 3	Structure and properties of copper and aluminum and their alloys. Understand the corrosive protective methods for metals	PO2	2	
AAE005.04	CLO 4	Discuss different casting procedures- sand casting, metal casting, investment casting, centrifugal casting, etc.	PO3	1	
AAE005.05	CLO 5	Understand the procedure of welding processes like arc welding, gas welding, spot welding, Soldering and for different materials.	PO3	2	
AAE005.06	CLO 6	Understand the different NDT testing procedures for metals and non-metals by using ultrasonic testing, radiography testing and magnetic particle testing	PO2	2	
AAE005.07	CLO 7	Getting knowledge about the sheet metal techniques to produce different objects like punching, blanking, piercing, shearing, etc.	PO3	3	
AAE005.08	CLO 8	Understand the concept of spinning, stretch forming and drawing of different materials.	PO1	2	
AAE005.09	CLO 9	Understand the different fastening techniques riveting, tooling of aircraft by using jigs and fixtures.	PO2	2	
AAE005.10	CLO 10	Gain knowledge about the basic convectional, unconventional riveting and welding for knowledge based exams.	PO3	1	
AAE005.11	CLO 11	Getting knowledge to implement the chemical and electro chemical machining techniques.	PO5	2	
AAE005.12	CLO 12	Understand the processes parameters of electrical energy based machining processes.	PO2	2	
AAE005.13	CLO 13	Demonstrate a good understanding of types and properties of composites used in aircraft.	PO1	3	
AAE005.14	CLO 14	Possess knowledge in processing and fabrication of structural composites.	PO5	3	
AAE005.15	CLO 15	Understand mechanical behaviors of aircraft composite materials.	PO5	2	

3 = High; 2 = Medium; 1 = Low

Course Learning					-			nes (P					Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CLO 1	3																
CLO 2	2												1				
CLO 3		2															
CLO 4			1										2				
CLO 5			2														
CLO 6		2															
CLO 7			3														
CLO 8	2																
CLO 9		2											2				
CLO 10			1														
CLO 11					2												
CLO 12		2															
CLO 13	3												1				
CLO 14					3												
CLO 15					2												

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO3, PO5	SEE Exams	PO1, PO2, PO3, PO5	Assignments	PO1,PO5	Seminars	PO2
Laboratory Practices	PO1	Student Viva	-	Mini Project	PO3	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

-						
Unit-I	AIRCRAFT ENGINEERING MATERIALS					
hardening and ten copper and its all	Engineering materials Steels, study of iron, iron carbon phase diagram, heat treatment-annealing, normalizing, hardening and tempering of Aluminum and steel, Non-Ferrous metals and Alloys: Structure and properties of copper and its alloys, Aluminum and its alloys, Titanium and its alloys, Corrosion - Types of Corrosions - Prevention – Protective Treatments.					
Unit-II	CASTING, WELDING AND INSPECTION TECHNIQUES					
casting, Shell mol solid, laser weldir	s of various casting processes Sand casting, die-casting, centrifugal casting, investment ding types; Principles and equipment used in arc welding, gas welding, resistance welding, ag, and electron beam welding, soldering and brazing techniques. Need for NDT, ultrasonic hic testing, Flight testing.					
Unit-III	SHEET METAL PROCESSES IN AIRCRAFT INDUSTRY					
Sheet metal opera spinning drawing.	tions: shearing, punching, super plastic forming; operations in bending like stretch forming					
	nd techniques, equipment, fasteners, integral tanks, final assembly of aircraft, Jigs and assembly, aircraft tooling concepts.					
Unit-IV	CONVENTIONAL AND UNCONVENTIONAL MACHINING PROCESSES					
machine, comput machining, ultrase	principles, applications and operations of lathe, shaper, milling machines, grinding, drilling er numeric control machining. Working principles and applications of abrasive jet onic machining, Electric discharge machining and electro chemical machining, laser beam, asma arc machining.					
Unit-V	AIRCRAFT COMPOSITES					
fabricated forms, and carbon compo Materials used for	Introduction, Physical metallurgy, Wrought aluminum alloys, Cast aluminum alloys, Production of semi- fabricated forms, Aerospace applications, Plastics and rubber, Introduction to fiber reinforced plastics, glass and carbon composites; Fibers and resins; Characteristics and applications, Classification of aircraft materials; Materials used for aircraft components, Application of composite materials, Super alloys, indigenized alloys, emerging trends in aerospace materials.					
Text Books:						
 S. Kalpakjian, Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley 5th Edition, 1991. S. C. Keshu, K. K Ganapathy, "Aircraft production technology and management", Interline Publishing House, Bangalore, 3rd Edition, 1993. Douglas F. Horne, "Aircraft production technology", Cambridge University Press, 1st Edition, 1986. 						
REFERENCES :						
 S. C. Keshu, K. K Ganapathy, "Air craft production techniques", Interline Publishing House, Bangalore, 3rd Edition, 1993. R. K. Jain, "Production Technology", McGraw-Hill, 1st Edition, 2002. D. P. Kinger and M. L. P. W. L. P. W. D. L. P. D. P. Kinger and M. L. P. Kinger and M. K. Kinger and M. Kinger and Kinger and M. Kinger and Kinger and Kinger and M. Kinger and Kinger and M. Kinger and M. Kinger and Kinger						
J. U. F. Khailila	3. O. P. Khanna, M. Lal, "Production Technology", Dhanpat Rai Publications, 5th Edition, 1997.					

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Engineering materials Steels, study of iron	CLO1	T2:5.5 R1:1.12.1
3-5	Iron carbon phase diagram	CLO1	T2:5.6 R1:1.12.3
6-7	Heat treatment-annealing, normalizing, hardening and tempering	CLO1	T2:5.10

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	of Aluminum and steel, Non-Ferrous metals and Alloys		R1:1.15
8-10	Structure and properties of copper and its alloys, Aluminum and	CLO2	T2:5.15
	its alloys, Titanium and its alloys,		R1:1.16
11-12	Corrosion - Types of Corrosions - Prevention - Protective	CLO2	T2:5.17
	Treatments		R1:1.13.1
13-14	General principles of various Casting Processes - Sand casting,	CLO2	T2:5.18
	die-casting, centrifugal casting, investment casting.		R2:1.13.2
15-16	shell molding types	CLO3	T2:5.19
	2 · · · · · · · · · · · · · · · · · · ·	~~~~	R1:1.13.3
17-21	Principles and equipment used in arc welding, gas welding	CLO3	T2:5.20
22.22		CT 0.4	R1:1.17.1
22-23	Laser welding, Electron beam welding	CLO4	T2:5.24
24-25	Caldering and bearing tasky succ	CLO4	R1:1.17.3 T2:6.1
24-25	Soldering and brazing techniques	CL04	R1:2.3
26-27	Need for NDT, ultrasonic testing, Radiographic testing	CLO5	T2:6.3
20-27	Need for NDT, unrasonic testing, Radiographic testing	CLOJ	R1:2.6.1
28-30	Sheet metal operations-shearing	CLO5	T2:6.5
20-30	Sheet metal operations-shearing	CLOJ	R1:2.6.2
31-32	punching, super plastic forming and diffusion bonding	CLO6	T2:7.3
51-52	punching, super plastic forming and unrusion bonding	CLOO	R1:2.8
33-34	Different operations in bending like stretch forming spinning	CLO6	T2:7.5,7.6
55 51	drawing etc.	CLOU	R1:2.9.2
35-36	types of equipment for riveted joints	CLO7	T2:7.7
	······································		R1:2.10
37-39	Aircraft tooling concepts and Jigs and Fixtures	CLO7	T2:7.7
			R1:2.10
40-41	General principles of working and types of lathe	CLO8	T2:7.11
			R2:2.10.2
42-44	Shaper, milling machines, grinding, drilling m/c, CNC machining	CLO9	T2:7.11
	and general principles.		R1:2.32
45-48	Plane turning, threading, tapering, grooving, knurling and	CLO9	T2:15.2
	chamfering		R1:8.2
49-50	Importance of CNC and Advantages	CLO10	T2:15.7
			R2:8.3.3
51-52	Principles (with schematic diagram only) of working and	CLO10	T2:15.13
	applications of abrasive jet machining,		R1:8.7.2
53-54	USM, EDM, ECM and LBM operations	CLO11	T2:5.20
		GL 0.1.1	R1:1.17.1
55-57	Satellite missions, an operational satellite system,	CLO11	T2:5.24
E 0 C 0	elements of satellite, satellite bus subsystems	CT 010	R1:1.17.3
58-60	Introduction, Physical metallurgy, Wrought aluminum alloys,	CLO12	T3:6.1
<i>c</i> 1	Cast aluminum alloys, Production of semi-fabricated forms		R1:2.3
61	Introduction to fiber reinforced plastics, glass and carbon	CLO12	T2:6.3
62-63	composites; Fibers and resins. Characteristics and applications, Classification of aircraft	CLO13	R3:2.6.1 T2:6.5
02-03	materials;	CLUIS	R1:2:6.5
64-65	Materials used for aircraft components, Application of composite	CLO13	T2:7.3
04-05	material material	CLUIS	R1:2.8
67-66	Super alloys, indigenized alloys	CLO14	T3:7.5,7.6
07-00	Super anoys, murgenized anoys	CLU14	R3:2.9.2
68	emerging trends in aerospace materials	CLO14	T3:7.7
00	emerging trends in acrospace materials	CL014	R3:2.10

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Gain knowledge in unconventional machining process	Assignments	PO1,PO2	PSO1
2	Encourage students to make case studies on different advanced manufacturing methods	Seminars / Guest Lectures/ NPTEL	PO1,PO5	PSO1

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

Prepared by:

Mr. S. Devaraj, Assistant Professor.

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ANALYSIS OF AIRCRAFT STRUCTURES					
Course Code	AAE006					
Programme	B.Tech					
Semester	IV					
Course Type	Core					
Regulation	IARE - R16					
		Theory	Practical			
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Chief Coordinator	ief Coordinator Dr. Y B Sudhir Sastry, Professor					
Course Faculty Dr. Y B Sudhir Sastry, Professor						

I. COURSE OVERVIEW:

The primary objective of this course is to understand the different Aircraft structural component loads, and to equip the senior year aerospace engineering students with the relevant infrastructure to carry out the design of aircraft sub-structures like wings, fuselages, landing gears etc.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS007	Ι	Applied physics	
UG	AME002	II	Engineering Mechanics	4
UG	AAE002	III	Theory of Structures	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIAExamination	Total Marks
Analysis of Aircraft Structures	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	,	Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex	3	Presentation on real-world problems
	engineering problems.		
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Seminar
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignment

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development	2	Assignments
	of new products		
PSO 2	Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	2	Assignments
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	2	Laboratory
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Understand the aircraft structural components and its behavior under different loading conditions
II	Obtain knowledge in plate buckling and structural instability of stiffened panels for airframe structural analysis.
III	Explain the thin walled section and structural idealization of panels and differentiate from the type of loads carried.
IV	Solve for stresses and deflection in aircraft structures like fuselage, wing and landing gear.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
CAAE006.01	CLO 1	Discuss the Aircraft Structural components, various	PO 1	3	
		functions of the components and airframe loads acting			
		on it.			
CAAE006.02	CLO 2	PO 1	3		
		effect of Aircraft inertia loads, Symmetricmaneuver			
		loads, gust loads on the joints.			
CAAE006.03	CLO 3	Differentiate Monocoque and semi monocoque	PO 1	3	
		structures and analyze stresses in thin and thick shells.			
CAAE006.04	CLO 4	Explain energy principles and its application in the	PO 2	2	
		analysis of structural components of Aircraft.			
CAAE006.05	CLO 5	Explain the Theory of thin plates and Analyze thin	PO 1	3	
		rectangular plates subject to bending, twisting,			
		distributed transverse load, combined bending and in-			
		plane loading.			
CAAE006.06	CLO 6	Describe Buckling phenomena of thin plates and	PO 1,	2	
		derive Elastic, inelastic, experimental determination	PO 2		
		of critical load for a flat plate.			
CAAE006.07	CLO 7	Calculate the local instability, instability of stiffened	PO 2	1	
	020 /	panels, failure stresses in plates and stiffened panels.	102	-	
CAAE006.08	CLO 8	Discuss critical buckling load for flat plate with	PO 2	1	
	020 0	various loading and end conditions	102	-	
CAAE006.09	CLO 9	Solve for bending and shear stresses of symmetric and	PO 2	2	
	010)	un-symmetric beams under loading conditions	102	-	
CAAE006.10	CLO 10	-	PO 2	2	
C/11/12/000.10	CLO IO	various approaches	102	2	
CAAE006.11	CLO 11	Calculate the shear stresses and shear flow	PO 1	3	
C/1112000.11	CLO II	distribution of thin walled sections subjected to shear	101	5	
		loads.			
CAAE006.12	CLO 12		PO 1	3	
CAAL000.12	CLO 12	Warping associated with Bredt-Batho shear flow	101	5	
		theory of beams.			
CAAE006 12	$CI \cap 12$	•	PO 1	2	
		Explain the theory of Structural idealization		3	
CAAE006.14	CLO 14	1 1 5	PO 1, PO 2	3	
<u><u>a</u> + + <u>F</u> = 0 < 4 f = 1</u>	GL 0. 1.	beams under bending, shear, torsion.			
CAAE006.15	CLO 15		PO 3	2	
<u></u>	<u> </u>	sections subjected to bending.			
CAAE006.16	CLO 16		PO 2	2	
		sections subjected to, shear and torsion.			
CAAE006.17	CLO 17		PO 2	3	
		sections subjected to bending			
CAAE006.18	CLO 18	5	PO 2	2	
		sections subjected to shear and torsion.			
G + + E + + + + + + + + + + + + + + + + + + +	CLO 19		PO 3	3	
CAAE006.19		1 1 1 1 1 1			
CAAE006.19		subjected to transverse and shear loads.			
CAAE006.19 CAAE006.20	CLO 20	-	PO 3	3	
	CLO 20	-	PO 3	3	

^{3 =} High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning				P	rogra	m Ou	itcom	es (Po	Os)					Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CLO 1	3												2				
CLO 2	3												2				
CLO 3	3																
CLO 4		2															
CLO 5	3													2	2		
CLO 6	3	3													2		
CLO 7		1												2			
CLO 8		1															
CLO 9		2															
CLO 10		2															
CLO 11	3													2			
CLO 12	3																
CLO 13	3																
CLO 14	3	3															
CLO 15			2														
CLO 16		2															
CLO 17		3															
CLO 18		2															
CLO 19			3											2			
CLO 20			3											2			

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO3	SEE Exams	PO 1, PO2, PO3	Assignments	PO 3	Seminars	PO 2
Laboratory Practices	PO 3	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I INTRODUCTION TO AIRCRAFT STRUCTURAL COMPONENTS AND ENERGY METHODS

Aircraft Structural components and loads, functions of structural components, airframe loads; Types of structural joints, type of loads on structural joints; Aircraft inertia loads; Symmetric manoeuvre loads, gust loads. Monocoque and semi monocoque structures, stress in thin and thick shells; Introductions to energy principles, castiglianos theorems, max wells reciprocal theorem, unit load method, Rayleigh Ritz method, total potential energy method, flexibility method.

UNIT-II THIN PLATE THEORY, STRUCTURAL INSTABILITY

Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading: Thin plates having small initial curvature, energy methods of analysis. Buckling of thin plates: Elastic, inelastic, experimental determination of critical load for a flat plate, local instability, instability of stiffened panels, failure stresses in plates and stiffened panels. Tension field beams- complete diagonal tension, incomplete diagonal tension, post buckling behavior.

UNIT-III BENDING, SHEAR AND TORSION OF THIN WALLED BEAMS

Unsymmetrical bending: Resolution of bending moments, direct stress distribution, position of neutral axis; Deflections due to bending: Approximations for thin walled sections, temperature effects;

Shear loaded thin walled beams: General stress, strain and displacement relationships, direct stress and shear flow system, shear centre, twist and warping.

Torsion of beams of closed section: Displacements associated with Bredt-Batho shear flow; Torsion of open section beams; Warping of cross section, conditions for zero warping; Bending, shear, torsion of combined open and closed section beams.

UNIT-IV STRUCTURAL IDEALIZATION

Structural idealization: Principal assumptions, idealization of panel, effect on the analysis of thin walled beams under bending, shear, torsion loading- application to determining deflection of open and closed section beams. Fuselage frames - bending, shear and torsion.

UNIT-V ANALYSIS OF FUSELAGE, WING AND LANDING GEAR

Wing spar and box beams, tapered wing spar, open and closed sections beams, beams having variable stringer areas; wings – three boom shell in bending, torsion and shear, tapered wings, deflections, cutouts in wings; Cutouts in fuselages; Fuselage frame and wing rib; principle of stiffener, web constructions. Landing gear and types; Analysis of landing gear.

TEXT BOOKS:

- 1. T. H. G. Megson, "Aircraft Structures", Butterworth-Heinemann Ltd, 5th Edition, 2012.
- 2. E. H. Bruhn, "Analysis and Design of Flight vehicles Structures", Tri-state off set company, USA, 4th Edition, 1965.

REFERENCES:

- B. K. Donaldson, "Analysis of Aircraft Structures An Introduction", McGraw Hill, 3rd Edition, 1993.
- 2. S. Timoshenko, "Strength of Materials", Volumes I and II, Princeton D. Von Nostrand Co., Reprint, 1977.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-3	Aircraft Structural components and loads.	CLO 1	T1:12.1
4-6	Functions of structural components, airframe loads.	CLO 1	T1:12.2
7-8	Types of structural joints, typeof loads on structural joints; Aircraft inertia loads.	CLO 2	T1:12.3
9-11	Symmetric maneuver loads, gust loads. Monocoque and semi monocoque structures, stress in thin and thick shells.	CLO 2, CLO 3	T1:14.2 R2:IV.25
12-14	Introductions to energy principles, castiglianos theorems, max wells reciprocal theorem, unit load method.	CLO 4	T1:5.5 T1:5.10
15-17	Rayleigh Ritz method, total potential energy method, flexibility method.	CLO 4	T1:5.6 T2:15.2
18-20	Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading.	CLO 5	T2:C5.6 R1:22.5
21-23	Thin plates having small initial curvature, energy methods of analysis. Buckling of thin plates: Elastic, inelastic, experimental determination of critical load for a flat plate.	CLO 6	T1:9.1 R1:22.6
24-26	Local instability, instability of stiffened panels, failure stresses in plates and stiffened panels. Tension field beams- complete diagonal tension, incomplete diagonal tension, post buckling behavior.	CLO 7, CLO 8	T2:A18.20 T2:C11.1
27-30	Unsymmetrical bending: Resolution of bending moments, direct stress distribution, position of neutral axis.	CLO 9	T1:16.1
31-33	Deflections due to bending: Approximations for thin walled sections, temperature effects.	CLO 10	T1:16.6
34-37	Shear loaded thin walled beams: General stress, strain and displacement relationships, direct stress and shear flow system, shear centre, twist and warping.	CLO 11	T1:17.1
38-39	Torsion of beams of closed section: Displacements associated with Bredt-Batho shear flow; Torsion of open section beams.	CLO 12	T2:A6.4 R2:X.62
40	Warping of cross section, conditions for zero warping; Bending, shear, torsion of combined open and closed section beams.	CLO 12	T1:18.1.2
41	Structural idealization, Principal assumptions.	CLO 13	T1:20.1
42-44	Idealization of panel, effect on the analysis of thin walled beams under bending, shear, torsion loading.	CLO 14, CLO 15	T1:20.2
45-47	Application to determining deflection of open and closed section beams.	CLO 16	T1:16.3
48-50	Fuselage frames - bending, shear and torsion.	CLO 17, CLO 18	T1:24.2
51-53	Wing spar and box beams.	CLO 20	T2:A22.5
54-56	Open and closed sections beams, beams having variable stringer areas.	CLO 19	T1:27.1
57-59	Wings – three boom shell in bending, torsion and shear, tapered wings, deflections, cutouts in wings.	CLO 20	T1:23.8 T2:A19.14

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
60	Cutouts in fuselages; Fuselage frame and wing rib; principle of stiffener, web constructions. Landing gear and types; Analysis of landing gear.	CLO 20	T1:22.4 T2:A5.18

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Broad knowledge of engineering materials and material properties	Seminars / Guest Lectures/ NPTEL	PO 1	PSO 1
2	Practical Exposure about the stress deflections and stability of elements	Seminars / Guest Lectures / NPTEL	PO 3	PSO 3

Prepared by: Dr. Y B Sudhir Sastry, Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION						
Course Code	AHSOC)4					
Programme	B. Tech	h					
G (Π	ECE	3				
Semester	IV	AE	EEE				
Course Type	Foundation						
Regulation	IARE - R16						
	Theory				Practical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	-	-	
Chief Coordinator	Ms. C Rachana, Assistant Professor						
Course Faculty	Mr. Ch Soma shekhar, Assistant Professor Mr. J Suresh Goud, Assistant Professor Ms. P Rajani, Assistant Professor						

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes complex functions and differentiation, complex integration power series expansion of complex function and single random variables. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Complex Analysis And Probability Distribution	70 Marks	30 Marks	100

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	7	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Theory		
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks	
CIA Marks	25	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on
	mathematics, science, engineering fundamentals, and an		real-world
	engineering specialization to the solution of complex		problems
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	Seminar
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 4	Conduct investigations of complex problems: Use research-	2	Term Paper
	based knowledge and research methods including design of		
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions.		

3 = **High**; **2** = **Medium**; **1** = **Low**

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	1	Seminar
	aeronautical/aerospace engineering in innovative, dynamic and		
	challenging environment for design and development of new		
	products		
PSO 2	Problem solving skills: Imparted through simulation language	-	-
	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice to		
	fabricate and test and develop the products with more		
	innovative technologies		
PSO 4	Successful Career And Entrepreneurship: To prepare the		
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats		
	3 - High: 2 - Medium: 1 - Low		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course s	The course should enable the students to:						
Ι	Understand the basic theory of complex functions to express the power series.						
II	Evaluate the contour integration using Cauchy residue theorem.						
III	Enrich the knowledge of probability on single random variables and probability distributions.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AHS004.01	CLO 1	Define continuity, differentiability, analyticity of	PO 1	3
		a function using limits.		
AHS004.02	CLO 2	Understand the conditions for a complex	PO 1	3
		variable to be analytic and/or entire function.		
AHS004.03	CLO 3	Understand the concepts of Cauchy-Riemann	PO 2	3
		relations and harmonic functions.		
AHS004.04	CLO 4	Understand the concept of complex	PO 4	1
		differentiation to the real-world problems of		

AHS004.05 CLO 5 Evaluate the area under a curve using the concepts of indefinite integration PO 2 AHS004.06 CLO 6 Understand the concepts of the Cauchy's integral formula and the generalized Cauchy's integral formula. PO 2 AHS004.07 CLO 7 Evaluate complex functions as power series and radius of convergence of power series. PO 1 AHS004.08 CLO 8 Understand the concept of complex integration to the real-world problems of flow with circulation around a cylinder. PO 4 AHS004.09 CLO 9 Solve the Taylor's and Laurent series expansion PO 2 PO 1 AHS004.10 CLO 10 Understand the concept of different types of singularities for analytic function. PO 1 AHS004.11 CLO 11 Evaluate bilinear transformation by cross ratio property. PO 1 AHS004.12 CLO 12 Evaluate bilinear transformation. PO 4 AHS004.13 CLO 13 Identify the conditions of fixed and critical point PO 4 PO 4 AHS004.14 CLO 14 Understand the concept of Cauchy's residue theorem. PO 4 AHS004.15 CLO 12 Evaluate bilinear transformation. PO 4 AHS004.13 CLO 13 Identify the conditions	CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS004.05 CLO 5 Evaluate the area under a curve using the concepts of indefinite integration PO 2 AHS004.06 CLO 6 Understand the concepts of the Cauchy's integral formula and the generalized Cauchy's integral formula. PO 2 AHS004.07 CLO 7 Evaluate complex functions as power series and radius of convergence of power series. PO 1 AHS004.08 CLO 8 Understand the concept of complex integration to the real-world problems of flow with circulation around a cylinder. PO 2 AHS004.09 CLO 9 Solve the Taylor's and Laurent series expansion of complex functions PO 1 AHS004.10 CLO 10 Understand the concept of different types of singularities for analytic function. PO 1 AHS004.11 CLO 11 Evaluate bilinear transformation by cross ratio property. PO 1 AHS004.12 CLO 12 Evaluate bilinear Transformation. PO 4 AHS004.13 CLO 14 Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions. PO 4 AHS004.16 CLO 16 Demonstrate an understanding of the basic concepts of probability and random variables. PO 4 AHS004.18 CLO 16 Classify the types o				FF	FF8
AHS004.06 CLO 6 Understand the concepts of the Cauchy's integral formula and the generalized Cauchy's integral formula. PO 2 AHS004.07 CLO 7 Evaluate complex functions as power series and radius of convergence of power series. PO 1 AHS004.08 CLO 8 Understand the concept of complex integration to the real-world problems of flow with circulation around a cylinder. PO 4 AHS004.09 CLO 9 Solve the Taylor's and Laurent series expansion of complex functions PO 1 AHS004.10 CLO 10 Understand the concept of different types of singularities for analytic function. PO 1 AHS004.11 CLO 12 Evaluate poles, residue and solve integrals using Cauchy's residue theorem. PO 1 AHS004.12 CLO 13 Identify the conditions of fixed and critical point of Bilinear Transformation. PO 4 AHS004.13 CLO 14 Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions. PO 4 AHS004.15 CLO 16 Classify the types of random variables. PO 4 AHS004.17 CLO 16 Classify the types of random variables and calculate mean, variance. PO 2 AHS004.18 CLO 19 Finding mom	AHS004.05	CLO 5	Evaluate the area under a curve using the	PO 2	2
AHS004.07 CLO 7 Evaluate complex functions as power series. PO 1 AHS004.08 CLO 8 Understand the concept of complex integration to the real-world problems of flow with circulation around a cylinder. PO 2 AHS004.09 CLO 9 Solve the Taylor's and Laurent series expansion of complex functions PO 1 AHS004.10 CLO 10 Understand the concept of different types of singularities for analytic function. PO 1 AHS004.11 CLO 11 Evaluate poles, residues and solve integrals using Cauchy's residue theorem. PO 1 AHS004.12 CLO 13 Identify the conditions of fixed and critical point of Bilinear Transformation. PO 4 AHS004.14 CLO 13 Identify the conditions of fixed and critical point of Bilinear Transformation. PO 4 AHS004.14 CLO 14 Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions. PO 4 AHS004.16 CLO 16 Classify the types of random variables and calculate mean, variance. PO 2 AHS004.17 CLO 18 Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processing PO 4 AHS004.19 C	AHS004.06	CLO 6	Understand the concepts of the Cauchy's integral formula and the generalized Cauchy's integral	PO 2	2
AHS004.08 CLO 8 Understand the concept of complex integration to the real-world problems of flow with circulation around a cylinder. PO 4 AHS004.09 CLO 9 Solve the Taylor's and Laurent series expansion of complex functions PO 1 AHS004.10 CLO 10 Understand the concept of different types of singularities for analytic function. PO 1 AHS004.11 CLO 12 Evaluate poles, residues and solve integrals using Cauchy's residue theorem. PO 1 AHS004.12 CLO 12 Evaluate bilinear transformation by cross ratio property. PO 4 AHS004.13 CLO 14 Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions. PO 4 AHS004.15 CLO 15 Demonstrate an understanding of the basic concepts of probability and random variables. PO 2 AHS004.16 CLO 16 Classify the types of random variables and calcular mean, variance. PO 2 AHS004.17 CLO 17 Finding moment about origin, central moments, moment generating function of probability distribution. PO 4 AHS004.18 CLO 18 Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processing PO 1, PO 2 AHS004.18 CLO 18 Und	AHS004.07	CLO 7	Evaluate complex functions as power series and	PO 1	3
AHS004.09CLO 9Solve the Taylor's and Laurent series expansion of complex functionsPO 2AHS004.10CLO 10Understand the concept of different types of singularities for analytic function.PO 1AHS004.11CLO 11Evaluate poles, residues and solve integrals using Cauchy's residue theorem.PO 1AHS004.12CLO 12Evaluate bilinear transformation by cross ratio property.PO 1AHS004.13CLO 13Identify the conditions of fixed and critical point of Bilinear Transformation.PO 4AHS004.14CLO 14Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions.PO 4AHS004.15CLO 16Classify the types of random variables.PO 4AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 4.AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 1AHS004.22CLO 21Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.22CLO 24Possess the knowledge and skills forPO 4	AHS004.08	CLO 8	Understand the concept of complex integration to the real-world problems of flow with	PO 4	1
AHS004.10CLO 10Understand the concept of different types of singularities for analytic function.PO 1AHS004.11CLO 11Evaluate poles, residues and solve integrals using Cauchy's residue theorem.PO 1AHS004.12CLO 12Evaluate bilinear transformation by cross ratio property.PO 1AHS004.13CLO 13Identify the conditions of fixed and critical point of Bilinear Transformation.PO 4AHS004.14CLO 13Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions.PO 4AHS004.15CLO 16Demonstrate an understanding of the basic concepts of probability and random variables.PO 2AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 4AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 20Apply the inferential methods relating to the phenomena of real-world problem like sick versus healthy.PO 4AHS004.22CLO 23Use poisson distribution in real-world problem like sick market.PO 4AHS004.22CLO 24Possess the knowledge and skills forPO 4	AHS004.09	CLO 9	Solve the Taylor's and Laurent series expansion	PO 2	3
AHS004.11CLO 11Evaluate poles, residues and solve integrals using Cauchy's residue theorem.PO 1AHS004.12CLO 12Evaluate bilinear transformation by cross ratio property.PO 1AHS004.13CLO 13Identify the conditions of fixed and critical point of Bilinear Transformation.PO 4AHS004.14CLO 14Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions.PO 4AHS004.15CLO 15Demonstrate an understanding of the basic concepts of probability and random variables.PO 2AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 4AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 1, PO 2AHS004.19CLO 20Apply the inferential methods relating to the means of normal distributions.PO 1, PO 2AHS004.20CLO 20Apply the inferential methods relating to the phenomeno of real-world problem like sick versus healthy.PO 4AHS004.22CLO 23Use poission distribution in real-world problem like sick versus healthy.PO 1AHS004.23CLO 24Possess the knowledge and skills forPO 4	AHS004.10	CLO 10	Understand the concept of different types of	PO 1	3
AHS004.12CLO 12Evaluate bilinear transformation by cross ratio property.PO 1AHS004.13CLO 13Identify the conditions of fixed and critical point of Bilinear Transformation.PO 4AHS004.14CLO 14Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions.PO 4AHS004.15CLO 15Demonstrate an understanding of the basic concepts of probability and random variables.PO 2AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 4AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 1, PO 2AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 20Apply the inferential methods relating to the phenomena of real-world problem like sick versus healthy.PO 4AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 24Possess the knowledge and skills forPO 4	AHS004.11	CLO 11	Evaluate poles, residues and solve integrals	PO 1	3
AHS004.13CLO 13Identify the conditions of fixed and critical point of Bilinear Transformation.PO 4AHS004.14CLO 14Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions.PO 4AHS004.15CLO 15Demonstrate an understanding of the basic concepts of probability and random variables.PO 2AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 4AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 1, PO 2AHS004.20CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.21CLO 21Understand the mapping of normal distribution in real-world problem like sick versus healthy.PO 1AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem like sick wersus healthy.PO 1AHS004.23CLO 23Use poission distribution in real-world problem to predict soccer scores.PO 4	AHS004.12	CLO 12	Evaluate bilinear transformation by cross ratio	PO 1	2
AHS004.14CLO 14Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of atomic collisions.PO 4AHS004.15CLO 15Demonstrate an understanding of the basic concepts of probability and random variables.PO 4AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 2AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 1, PO 2AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 1AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 23Use poission distribution in real-world problem to predict soccer scores.PO 4	AHS004.13	CLO 13	Identify the conditions of fixed and critical point	PO 4	2
AHS004.15CLO 15Demonstrate an understanding of the basic concepts of probability and random variables.PO 4AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 2AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 1, PO 2AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 20Apply the inferential methods relating to the means of normal distributions.PO 1, PO 2AHS004.21CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 1AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 24Possess the knowledge and skills forPO 4	AHS004.14	CLO 14	Understand the concept of Cauchy's residue theorem to the real-world problems of Quantum Mechanical scattering and Quantum theory of	PO 4	2
AHS004.16CLO 16Classify the types of random variables and calculate mean, variance.PO 2AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 2AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 4AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, 	AHS004.15	CLO 15	Demonstrate an understanding of the basic	PO 4	2
AHS004.17CLO 17Finding moment about origin, central moments, moment generating function of probability distribution.PO 2AHS004.18CLO 18Understand the concept of random variables to the real-world problems like graph theory, machine learning and natural language processingPO 4AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 20Apply the inferential methods relating to the means of normal distributions.PO 1, PO 2AHS004.21CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 1AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 23Use poission distribution in real-world problem to predict soccer scores.PO 4	AHS004.16	CLO 16	Classify the types of random variables and	PO 2	3
AHS004.19CLO 20 reachineRecognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2 PO 2AHS004.20CLO 20 reachineApply the inferential methods relating to the means of normal distributions.PO 1, PO 2AHS004.21CLO 21 reachineUnderstand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 1AHS004.22CLO 22 reachineUnderstand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 23 reachineUse poission distribution in real-world problem to predict soccer scores.PO 4	AHS004.17	CLO 17	Finding moment about origin, central moments, moment generating function of probability	PO 2	3
AHS004.19CLO 19Recognize where the binomial distribution and poisson distribution could be appropriate model and find mean, variance of the distributions.PO 1, PO 2AHS004.20CLO 20Apply the inferential methods relating to the means of normal distributions.PO 1, PO 2AHS004.21CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 1AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 23Use poission distribution in real-world problem to predict soccer scores.PO 4	AHS004.18	CLO 18	the real-world problems like graph theory, machine learning and natural language	PO 4	3
AHS004.20CLO 20Apply the inferential methods relating to the means of normal distributions.PO 1, PO 2AHS004.21CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 4AHS004.22CLO 22Understand the mapping of normal distribution 	AHS004.19	CLO 19	Recognize where the binomial distribution and poisson distribution could be appropriate model		3
AHS004.21CLO 21Understand binomial distribution to the phenomena of real-world problem like sick versus healthy.PO 4AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 23Use poission distribution in real-world problem to predict soccer scores.PO 4AHS010.24CLO 24Possess the knowledge and skills forPO 4	AHS004.20	CLO 20	Apply the inferential methods relating to the		3
AHS004.22CLO 22Understand the mapping of normal distribution in real-world problem to analyze the stock market.PO 1AHS004.23CLO 23Use poission distribution in real-world problem to predict soccer scores.PO 4AHS010.24CLO 24Possess the knowledge and skills forPO 4	AHS004.21	CLO 21	Understand binomial distribution to the phenomena of real-world problem like sick		3
AHS010.24 CLO 24 Possess the knowledge and skills for PO 4	AHS004.22	CLO 22	Understand the mapping of normal distribution in real-world problem to analyze the stock	PO 1	3
AHS010.24 CLO 24 Possess the knowledge and skills for PO 4	AHS004.23	CLO 23		PO 4	3
employability and to succeed in national and international level competitive examinations.	AHS010.24	CLO 24	Possess the knowledge and skills for employability and to succeed in national and	PO 4	2

³ = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLO 1	PO1	PO2	DO2	Program Outcomes (POs)Program Specific Outcomes (PSOs))s)					
	3		rU3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2		
CLO 2													1			
	3												1			
CLO 3		3											1			
CLO 4				1												
CLO 5		2											1			
CLO 6		2											1			
CLO 7	3															
CLO 8				1												
CLO 9		3											1			
CLO 10	3												1			
CLO 11	3															
CLO 12	2															
CLO 13				2												
CLO 14				2									1			
CLO 15				2												
CLO 16		3														
CLO 17		3											1			
CLO 18				3									1			
CLO 19	3	2											1			
CLO 20	3	2											1			
CLO 21				3									1			
CLO 22	3															
CLO 23				3												
CLO 24				2												

3 = High; **2** = Medium; **1** = Low

١

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO2, PO4	SEE Exams	PO1,PO2, PO4	Assignments	PO2	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	COMPLEX FUNCTIONS AND DIFFERENTIATION							
plane, conce	Complex functions differentiation and integration: Complex functions and its representation on argand plane, concepts of limit, continuity, differentiability, analyticity, Cauchy-Riemann conditions and harmonic functions; Milne-Thomson method.							
Unit-II	COMPLEX INTEGRATION							
Cauchy's inte	: Evaluation along a path and by indefinite integration; Cauchy's integral theorem; egral formula; Generalized integral formula; Power series expansions of complex functions integration: Radius of convergence.							
Unit-III	POWER SERIES EXPANSION OF COMPLEX FUNCTION							
point; Pole of Evaluation of Evaluation of	Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point; Isolated singular point; Pole of order m; Essential singularity; Residue: Cauchy Residue Theorem. Evaluation of Residue by Laurent Series and Residue Theorem. Evaluation of integrals of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta)d\theta$ and $\int_{-\infty}^{\infty} f(x)dx$							
Bilinear Tran								
Unit-IV	SINGLE RANDOM VARIABLES							
a probability	ables: Discrete and continuous, probability distributions, mass function-density function of distribution. Mathematical expectation. Moment about origin, central moments, moment nction of probability distribution.							
Unit-V	PROBABILITY DISTRIBUTIONS							
Binomial, Por	isson and normal distributions and their properties.							
Text Books:								
1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 10 th Edition, 2010 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43 rd Edition, 2015.								
Reference Books:								
 T.K.V Iyengar, B.Krishna Gandhi, "Engineering Mathematics - III", S. Chand & Co., 12th Edition, 2015. T.K.V Iyengar, B.Krishna Gandhi, "Probability and Statistics", S. Chand & Co., 7th Edition, 2015. Churchill, R.V. and Brown, J.W, "Complex Variables and Applications", Tata Mc Graw-Hill, 8th Edition, 2012. 								

XIV. COURSE PLAN:

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Understanding the complex function in Argand plane	CLO 1	T1:12.1 R1:4.2
2	Apply the limit of a complex function	CLO 1	T1:12.3 R1:4.4
3	Apply the continuity of a complex function	CLO 1	T1:12.3 R1:4.6
4	Apply the differentiability and analyticity of a complex function	CLO 1	T1:12.3 R1:4.7
5-6	Identify and Apply the of Cauchy-Riemann conditions in Cartesian and Polar forms	CLO 3	T1:12.4 R1:4.13
7	Evaluate the Harmonic Conjugates	CLO 3	T1:12.4 R1:4.15
8-9	Apply the Milne-Thomson method to find the Analytic function	CLO 3	T1:12.4 R1:4.20
10-11	Demonstrate the Line Integral for a given path	CLO 5	T1:13.1 R1:5.3
12	Analyze the Cauchy's integral theorem in a given plane	CLO 5	T1:13.2 R1:5.5
13-14	Explain the Cauchy's integral formula	CLO 6	T1:13.3 R1:5.9
15-16	Analyze the Cauchy's general integral formula	CLO 6	T1:13.4 R1:5.10
17	Define the Power series expansions of complex functions and contour Integration	CLO 7	T1:14.1 R1:6.1
18	Evaluate the Radius of convergence of power series complex function	CLO 7	T1:14.2 R1:6.1
19-20	Identify the types of power series expansions	CLO 7	T1:14.4 R1:6.2
21	Define the types of Singularities and its nature	CLO 10	T1:15.2 R1:6.6
22	Define the concept of Residues	CLO 11	T1:15.1 R1:7.4
23-24	Evaluate the Residue	CLO 11	T1:15.1 R1:6.5
25	Evaluate of contour integrals	CLO 11	T1:15.3 R1:7.9
26	Analyze the properties of Bilinear transformation	CLO 12	T1:12.5 R1:8.8
27	Understand the basic concepts of Random variables	CLO 15	T2:26.7 R2:2.2
28-29	Understand the types of Probability distributions	CLO 16	T2:26.8 R2:2.6
30-31	Evaluate the Mass function, Density function	CLO 15	T2:26.8 R2:2.7
32	Define the Expectations of Probability Distribution	CLO 16	T2:26.10 R2:2.6
33-34	Evaluate the Moment and Central moments	CLO 17	T2:25.9 R2:3.2

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
35-36	Evaluate the Moment Generating functions	CLO 17	T2:26.11 R2:3.5
37-39	Understand and Apply the Binomial Distribution parameters	CLO 21	T2:26.14 R2:4.4
40-42	Understand and Apply the Poisson Distribution parameters	CLO 23	T2:26.15 R2:4.10
43-45	Understand and Apply the Normal Distribution parameters	CLO 20	T2:26.16 R2:4.15

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Problem reductions, Conformal mapping	Seminars	PO 1	PSO 1
2	In order to monitor the quality of products to plan effective and efficient designs to improve standards to test and analyze the quality of items	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students based on the taught statements to solve problems	NPTEL	PO 2	PSO 1

Prepared by: Ms. C Rachana, Assistant Professor

HOD, AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	THERM	THERMODYNAMICS					
Course Code	AME003	AME003					
Programme	B.Tech	B.Tech					
Semester	IV A	IV AE					
Course Type	Core						
Regulation	IARE - R	IARE - R16					
		Theory	Practical				
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits		
	3	1	4	-	-		
Chief Coordinator	Ms. Ch Ragha Leena, Assistant Professor						
Course Faculty	Ms. Ch. Ragha Leena, Assistant Professor Mr. R.Sabari Vihar, Assistant Professor						

I. COURSE OVERVIEW:

Thermodynamics is the science that deals with the relationship between heat and work and those properties of systems that bear relation to heat and work. General laws of energy transformations concerning all types of systems, mechanical, electrical and chemical may fall within the purview of this science. It is a science based on a number of empirical laws formed by experimentation from which all predictions concerning the physical behavior of the system may be deduced by logical reasoning. The findings have been formalized into certain basic laws, which are known as Zeroth, First, Second and third laws of thermodynamics. Power cycles and refrigeration cycle based on thermodynamic system is studied.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Basic concepts of Mathematics and Physics

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Thermodynamics	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	✔ Quiz		Assignments	×	MOOCs		
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos		
×	Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pat	tern for CIA
-------------------------	--------------

Component		• Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	10	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

PO 1 Engi			
0	neering knowledge: Apply the knowledge of	3	by Assignments
	ematics, science, engineering fundamentals, and an		
engin	eering specialization to the solution of complex		
engin	eering problems.		
PO 2 Prob	lem analysis: Identify, formulate, review research	3	Real time applications
literat	ture, and analyze complex engineering problems		
reach	ing substantiated conclusions using first principles of		
mathe	ematics, natural sciences, and engineering sciences		
PO 3 Desig	n/development of solutions: Design solutions for	2	Videos
comp	lex engineering problems and design system		
comp	onents or processes that meet the specified needs with		
appro	priate consideration for the public health and safety,		
	he cultural, societal, and environmental considerations.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Assignments
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	-	-
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The cou	The course should enable the students to:						
Ι	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.						
II	Apply Knowledge of properties during various phases of pure substances, mixtures, usage of steam						
	tables and Mollier chart, psychometric charts.						
III	Understand the direction law and concept of increase in entropy of universe.						
IV	Understand the working of ideal air standard, vapor cycles and evaluate their performance in open						
	systems like steam power plants, internal combustion engines, gas turbines and refrigeration systems.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	· · · · · · · · · · · · · · · · · · ·		PO's Mapped	Strength of Mapping	
AME003.01	CLO 1	Understand various forms of energy,	PO 1	3	
		mechanisms of energy transfer, the concept of			
		energy transfer, the concept of temperature,			
		energy balance, energy conservation and			
		conversion efficiency using familiar processes			
		that involver mostly mechanical forms of energy.			
AME003.02	CLO 2	Demonstrate knowledge of ability to identify &	PO 1	3	
		apply fundamentals to solve problems like	PO 2		
		system properties, amount of work transfer and			
		heat during various processes.			
AME003.03	CLO 3	Explore knowledge & ability to design the	PO 1	3	
		thermal related components in various fields of	PO 3		
		energy transfer equipment.			
AME003.04	CLO 4	Derive the first law of Thermodynamics from the	PO 1	3	
		concept of conservation of energy			
AME003.05	CLO 5	Discuss the nature of steady and unsteady	PO 1	3	
		processes under the influence of time			
AME003.06	CLO 6	Develop the second law of thermodynamics	PO 1	2	
		from the limitations of first law.			
AME003.07	CLO 7	Determine entropy changes in a wide range of	PO 1	3	
		processes and determine the reversibility or	PO 2		
		irreversibility of a process from such			
		calculations based on Carnot Cycle			
AME003.08	CLO 8	Understand the inter relationship between	PO 3	2	
		thermodynamic functions and an ability to use			
		such relationships to solve practical problems			
AME003.09	CLO 9	Knowledge of the Gibbs and Helmholtz free	PO 1	2	
		energies as equilibrium criteria, and the			
		statement of the equilibrium condition for closed			
		and open systems			
AME003.10	CLO 10	Determine the equilibrium states of a wide range	PO 2	3	
		of systems, ranging from mixtures of gases,		-	
		liquids, solids and pure condensed phases that			
		can each include multiple components.			
AME003.11	CLO 11	Discuss pressure-temperature, volume-	PO 2	3	
11112000111	02011	temperature, pressure-volume phase diagrams	102	U	
		and the steam tables in the analysis			
		of engineering devices and systems.			
AME003.12	CLO 12	Develop the Third Law of Thermodynamics	PO 1	3	
7 HVIL005.12	CLO 12	from the concept of absolute thermodynamic	101	5	
		scale and describe its significance.			
AME003.13	CLO 13	Understand the process of psychrometry that are	PO 3	2	
1 1012003.13		used in the analysis of engineering devices like	105	2	
		air conditioning systems			
AME003.14	CLO 14	Introduction to concepts of power and	PO 2	3	
AWIE003.14		refrigeration cycles. Their efficiency and	PO 2 PO 3	3	
		coefficients of performance.	105		
AME002 15		-	DO 2	2	
AME003.15	CLO 15	Ability to use modern engineering tools,	PO 3	2	

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		software and equipment to analyze energy		
		transfer in required air-condition application.		
AME003.16	CLO 16	Explore the use of modern engineering tools,	PO 3	2
		software and equipment to prepare for		
		competitive exams, higher studies etc.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Program Outcon						omes (POs)				Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												2			
CLO 2	3	3											1			
CLO 3	3		2										2			
CLO 4	3												2			
CLO 5	3												2			
CLO 6	3												2			
CLO 7	3	3											2			
CLO 8			2													
CLO 9	3												2			
CLO 10		3														
CLO 11		3														
CLO 12	3												2			
CLO 13		3														
CLO 14		3	2													
CLO 15			2													
CLO 16			2			1 – T 4										

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2, PO 3	SEE Exams	PO 1, PO 2, PO 3	Assignments	PO 1, PO 2	Seminars	PO 1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

✓ Early Semester Feedback		~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Basic Concepts: System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Cycle, Reversibility, Quasi static Process, Irreversible Process, Causes of Irreversibility, Various flow and non-flow processes, Energy in State and in Transition, Types-Work and Heat, Point and Path function., Zeroth Law of Thermodynamics, Concept of quality of Temperature, Principles of Thermometry, Reference Points, Constant Volume gas Thermometer, Ideal Gas Scale, PMMI - Joule's Experiments, First law of Thermodynamics, Corollaries First law applied to a Process, Applied to a flow system, Steady Flow Energy Equation.

Unit-II SECOND LAW OF THERMODYNAMICS

Limitations of the first law: Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality, Entropy, Principle of Entropy Increase, Availability and Irreversibility, Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations, Elementary Treatment of the Third Law of Thermodynamics.

Unit-III PURE SUBSTANCES

Phase Transformations, T-S and h-s diagrams, P-V-T- surfaces, Triple point at critical state properties during change of phase, Dryness Fraction, Mollier charts, Various Thermodynamic processes and energy Transfer, Steam Calorimeter.

Perfect Gas Laws: Equation of State, Specific and Universal Gas constants, Throttling and Free Expansion Processes, Deviations from perfect Gas Model, Vander Waals Equation of State.

Unit-IV MIXTURE OF PERFECT GASES

Mole Fraction, Mass friction, Gravimetric and volumetric Analysis, Volume fraction, Dalton's Law of partial pressure, Avogadro's Laws of additive volumes, and partial pressure, Equivalent Gas constant, Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases . Psychrometric properties-Dry bulb temperature, wet bulb temperature, specific humidity, Relative humidity, saturated air, Degree of saturation-adiabatic saturation, carrier equation, psychrometric chart.

Unit-V POWER CYCLES

Otto, Diesel, Dual Combustion cycles, Description and representation on P-V and T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis, comparison of Cycles, Introduction to Brayton cycle and Bell Coleman cycle.

Text Books:

- 1. P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill Publishers, 5th Edition, 2013.
- Yunus Cengel, Michael A. Boles, "Thermodynamics-An Engineering Approach", Tata McGraw Hill publishers, 8th Edition, 2014.

Reference Books:

- 1. J. B. Jones, R. E. Dugan, "Engineering Thermodynamics", Prentice Hall of India Learning.
- 2. Y. V. C. Rao, "An Introduction to Thermodynamics", Universities Press.
- 3. K. Ramakrishna, "Engineering Thermodynamics", Anuradha Publishers.
- 4. J.P Holman, "Thermodynamics" Tata McGraw Hill Publishers.

XIV. COURSE PLAN:

Lecture No	No		Reference
1	Basics concepts of Thermodynamics: Surrounding, Boundaries, Universe, Types of Systems, properties	CLO 1	T1:1.7 T2:1-3
2	Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium	CLO 2	T1:1.13 T2:1-4
3	State, Property, Process, Cycle, Reversibility, Quasi static Process, Irreversible Process, Causes of Irreversibility	CLO 1	T1:1.11 T2:1-3
4	Various flow and non-flow processes	CLO 1	T1:5.6 T2:2-5
5	Energy in State and in Transition, Types-Work and Heat, Point and Path function	CLO 2	T1:3.2 T2:2-4
6	Zeroth Law of Thermodynamics, Concept of quality of Temperature, Principles of Thermometry, Reference Points	CLO 3	T1:2.1 T2:1-8
7	Constant Volume gas Thermometer, Ideal Gas Scale, PMMI	CLO 1	T1:2.5 T2:1-8
8	Joule's Experiments, First law of Thermodynamics, Corollaries First law applied to a Process	CLO 4	T1:3.6 T2:2-6
9-10	Applied to a flow system, Steady Flow Energy Equation	CLO 5	T1:5.3 T2:2-6
11	Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance	CLO 6	T1:6.3 T2:6-1
12	Second Law of Thermodynamics, Kelvin Planck Statement	CLO 6	T1:6.4 T2:6-4
13-14	Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot's principle	CLO 7	T1:6.5 T2:6-5
15-16	Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality	CLO 7	T1:6.11 T2:6-6
17-19	Entropy, Principle of Entropy Increase, Availability and Irreversibility, Thermodynamic Potentials, Gibbs and Helmholtz Functions	CLO 9	T1:6.9 T2:7-2
20-22	Maxwell Relations, Elementary Treatment of the third Law of Thermodynamics	CLO 12	T1:11.2 T2:12-2
23-24	Pure Substances: Phase Transformations, T-S and H-S diagrams, P-V- T- Surfaces	CLO 11	T1:9.2 T2:3-4
24-25	T-S And H-S diagrams, P-V-T- Surfaces	CLO 11	T1:9.4 T2:3-4
26	Triple Point At Critical State Properties During Change Of Phase	CLO 10	T1:9.5 T2:1-3
27-28	Dryness Fraction, Mollier Charts, Problems	CLO 10	T1:9.5 T2:1-3
29-30	Various Thermodynamic Processes And Energy Transfer, Steam Calorimeter, Problems	CLO 02	T1:9.6
31-32	Perfect Gas Laws: Equation Of State	CLO 10	T1:10.2 T2:13-1
33	Specific and Universal Gas Constants	CLO 10	T1:10.3 T2:13-1
34-35	Throttling and Free Expansion Processes	CLO 10	T1:10.5 T2:13-2
36	Deviations from Perfect Gas Model	CLO 11	T1:10.6
37-39	Vander Waals Equation of State	CLO 11	T2:13-3 T1:10.4
40-41	Mixtures of Perfect Gases: Mole Fraction, Mass Friction	CLO 10	T1:10.8 T2:13-3

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
42	Gravimetric And Volumetric Analysis, Volume Fraction, Problems	CLO 10	T1:10.8 T2:13-2
43-44	Dalton's Law of Partial Pressure	CLO 10	T1:10.8 T2:13-2
45-46	Avogadro's Laws of Additive Volumes and Partial Pressure	CLO 11	T1:10.7 T2:13-3
47	Equivalent Gas Constant, Internal Energy, Enthalpy	CLO 10	T1:10.9 T2:13-1
48-49	Sp. Heats And Entropy of Mixture of Perfect Gases, Problems	CLO 08	T1:10.9 T2:13-2
50-51	Psychrometric Properties-Dry Bulb Temperature, Wet Bulb Temperature	CLO 13	T1:15.1 T2:14-1
52	Specific Humidity, Relative Humidity	CLO 12	T1:15.2 T2:14-2
53	Saturated Air, Degree of Saturation-Adiabatic Saturation	CLO 12	T1:15.2 T2:14-4
54	Carrier Equation, Psychrometric Chart	CLO 13	T1:15.3 T2:14-5
55-56	Power Cycles: Otto Cycle	CLO 14	T1:13.6 T2:9-5
57	Diesel, Dual Combustion Cycles	CLO 14	T1:13.6 T2:9-6
58	Description and Representation on P-V And T-S Diagram	CLO 14	T1:13.8 T2:9-5
59-60	Thermal Efficiency, Mean Effective Pressures on Air Standard Basis	CLO 14	T1:13.8 T2:9-6
61	Comparison of Cycles	CLO 14	T1:13.9 T2:9-5
62	Introduction to Brayton Cycle And Bell Coleman Cycle	CLO 14	T1:13.12 T2:9-8

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Directional law applied to automobile	Guest Lecture/Seminar	PO1,PO2,PO4	PSO 2
-	sector		DO 5	
2	Gas laws applied to cooling of electronic chips	Seminars	PO 5	PSO 2, PSO 3
3	Cooling of spindle bearings by using chillers	Seminars	PO 3	PSO 1, PSO 3

Prepared by: Ms. Ch.Ragha Leena, Assistant Professor

HOD, AE

V SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AIRCRA	AIRCRAFT PROPULSION				
Course Code	AAE007					
Programme	B.Tech					
Semester	V	V AE				
Course Type	Core					
Regulation	IARE - R	816				
	Theory				Practic	al
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits
	3		-	3	3	2
Chief Coordinator	Dr. Maruthupandiyan K, Associate Professor					
Course Faculty			oandiyan K, Ass asad, Assistant H		or	

I. COURSE OVERVIEW:

This course presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented.

II. COURSE PRE-REQUISITES:

Level Course Code		Semester	Prerequisites	Credits
UG	AME003	IV	Thermodynamics	4
UG	AAE003	III	Fluid Mechanics and Hydraulics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination		Total Marks
Aircraft Propulsion	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos
✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otar wiarks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on
	mathematics, science, engineering fundamentals, and an		real-world problems
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		
PO 3	Design/development of solutions: Design solutions for	3	Designing
	complex engineering problems and design system		
	components or processes that meet the specified needs with		
	appropriate consideration for the public health and safety,		
	and the cultural, societal, and environmental considerations.		
PO 4	Conduct investigations of complex problems: Use	1	Assignments
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	1	Seminar
PSO 2	Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	2	Tutorials
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	3	Mini project
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Analyze parametric cyclic analysis, performance parameters, efficiency, and specific impulse of all air breathing engines.
II	Know the design and performance of subsonic and supersonic inlets, types of combustion chambers and factors affecting the combustors
III	Discuss the types of nozzles, flow conditions in nozzles, interaction of nozzle flow with adjacent surfaces and thrust reversal
IV	Explain different types of compressors and turbines, work done, velocity diagrams and stage efficiency calculations.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO CLO's Code		At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
CAAE007.01	CLO 1	Apply knowledge and understand the essential facts, concepts and principles of thermodynamics.	PO 1	3	
CAAE007.02	CLO 2	Understand the basic function of all aircraft engine components and how they work.	PO 1	3	
CAAE007.03	CLO 3	Analyze the engine performance parameters and parameters influencing them.	PO 1	3	
CAAE007.04	CLO 4	Understand the impact of performance parameters on endurance and range how they affect the aircraft performance.	PO 2	2	
CAAE007.05	CLO 5	Demonstrate different type's aircraft engine operating principle.	PO 4	1	
CAAE007.06	CLO 6	Understand step by step procedure of engine parametric cycle analysis.	PO 3	3	
CAAE007.07	CLO 7	Understand steps involved in performance analysis of all aircraft engine.	PO 3	3	
CAAE007.08	CLO 8	Describe operational modes of subsonic inlets and parameters influencing it.	PO 1, PO 3	3	
CAAE007.09	CLO 9	Analyze diffuser performance, losses in it and their impact on engine performance.	PO 3	3	
CAAE007.10	CLO 10	Describe supersonic inlets, starting problem in it and their operating modes.	PO 1	3	
CAAE007.11	CLO 11	Understand different types of combustion chamber and functions of all the components.	PO 1, PO 2	2	
CAAE007.12	CLO 12	Analyze combustion chamber performance and parameters influencing them.	PO 1	3	
CAAE007.13	CLO 13	Describe theory of flow in isentropic nozzle and physics behind nozzle operation.	PO 1, PO 2	2	
CAAE007.14	CLO 14	Understand different nozzle operating conditions for convergent and divergent nozzle.	PO 1, PO 3	2	
CAAE007.15	CLO 15	Describe principle of operation of axial and centrifugal compressor.	PO 1, PO 4	2	
CAAE007.16	CLO 16	Understand different design of compressor and limitations of each method.	PO 1, PO 3	3	
CAAE007.17	CLO 17	Analyze performance characteristics of axial and centrifugal compressor.	PO 2, PO 4	1	
CAAE007.18	CLO 18	Describe principle of operation of centrifugal and axial flow turbine.	PO 1, PO 4	3	
CAAE007.19	CLO 19	Understand different design of axial and centrifugal turbine.	PO 1, PO 3	3	
CAAE007.20	CLO 20	Design of ramjet engine and steps involved in it.	PO 2, PO 4	1	

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLO]	Progr	am (Outco	omes	(POs))			Progra		cific O SOs)	utcomes
CLOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												1			
CLO 2	3												1			
CLO 3	3												1		3	
CLO 4		2														
CLO 5				1											3	
CLO 6			3													
CLO 7			3													
CLO 8	3		3											2		
CLO 9			3										1	2	3	
CLO 10	3															
CLO 11	3	2														
CLO 12	3														3	
CLO 13	3	2														
CLO 14	3		3										1	2		
CLO 15	3			1												
CLO 16	3		3											2		
CLO 17		2		1									1			
CLO 18	3			1												
CLO 19	3		3										1		3	
CLO 20		2		1										2		

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 2 PO 3, PO 4	Assignments	PO 1, PO 2	Seminars	PO 2
2	PO2, PO 3 PO 4	Student Viva	-	Mini Project	PO 3	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

,	~	Early Semester Feedback	~	End Semester OBE Feedback
	×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	AIR-BREATHING ENGINES							
turboprop, t thrust, insta consumptio and its imp	Classification, operational envelopes; Description and function of gas generator, turbojet, turbofan, turboprop, turbo shaft, ramjet, scramjet, turbojet/ramjet combined cycle engine; Engine thrust, takeoff thrust, installed thrust, thrust equation; Engine performance parameters, specific thrust, specific fuel consumption and specific impulse, thermal efficiency, propulsive efficiency, engine overall efficiency and its impact on aircraft range and endurance; Engine cycle analysis and performance analysis for turbojet, turbojet with afterburner, turbofan engine, turboprop engine.							
UNIT -II	INLETS AND COMBUSTION CHAMBERS							
ratio, diffus by area var	Internal flow and stall in subsonic inlets, relation between minimum area ratio and eternal deceleration ratio, diffuser performance, supersonic inlets, starting problem on supersonic inlets, shock swallowing by area variation; Classification of combustion chambers, combustion chamber performance, effect of operating variables on performance, flame stabilization.							
UNIT-III	NOZZLES							
efficiency, l Over expan	flow in isentropic nozzles, nozzles and choking, nozzle throat conditions, nozzle losses in nozzles. ded and under expanded nozzles, ejector and variable area nozzles, interaction of nozzle djacent surfaces, thrust reversal.							
UNIT-IV	COMPRESSORS							
rise, veloci compressor	f operation of centrifugal compressor and axial flow compressor, work done and pressure ty triangles, degree of reaction, free vortex and constant reaction designs of axial flow , performance characteristics of centrifugal and axial flow compressors, stage efficiency s, cascade testing.							
UNIT-V	TURBINES							
rise, veloci	F operation of axial flow turbines, limitations of radial flow turbines, work done and pressure ity triangles, degree of reaction, free vortex and constant angle designs, performance ics, sample ramjet design calculations, flame stability problems in ramjet combustors, n rockets.							
Text Books	s:							
Longma	 Hill, P.G. & Peterson, C.R. "Mechanics & Thermodynamics of Propulsion", Addison Wesley Longman INC, 1999. Mattingly J.D., "Elements of Propulsion: Gas Turbines and Rocket", AIAA, 1991. 							
Reference	Reference Books:							
2. Oates, C	 Cohen, H.Rogers, G.F.C. and Saravanamuttoo, H.I.H, "Gas Turbine Theory", Longman, 1989. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, 1985. 							

XIV. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Definefunction of gas generator	CLO 1	T2 4.1
3	Define engine thrust, takeoff thrust	CLO 2	T2 4.2
4-5	Explain thrust equation	CLO 2	T1 2.2-2.4
6-8	Explain performance parameters	CLO 3	T2 6.3-6.4
9-10	Discuss engine cycle analysis	CLO 5	T2 5.1-5.8
11-12	Analyze problems on performance analysis	CLO 5	T2 5.1-5.8
13	Define stall in inlets	CLO 6	T1 6.1-6.3
14-15	Explain relation between minimum area ratio and external acceleration	CLO 6	T1 6.1-6.3
16-18	Explain starting problemon supersonic inlets	CLO 7	T1 6.1-6.3
19	Discuss shock swallowing by area variation	CLO 8	T1 6.1-6.3
20	Classify combustion chamber	CLO 9	T1 6.4-6.5 R1 6.1- 6.4
21	Explain combustion chamber performance	CLO 11	R1 6.1- 6.4
23	Discuss effect of operating variables on performance	CLO 11	R1 6.1- 6.4
24	Define flame stabilization	CLO 11	R1 6.5- 6.8
25-26	Explain theory of flow in nozzle	CLO 12	T2 6.6-6.7
27	Define nozzle choaking	CLO 9	T2 6.6-6.7
28	Discuss nozzle throat conditions	CLO 12	T2 6.6-6.7
29-30	Analyze problems in nozzle efficiency	CLO 15	T2 6.6-6.7
31-32	Explain overexpanded and under expanded nozzle	CLO 15	T2 6.6-6.7
33-34	Discuss variable area nozzle	CLO 15	T2 6.6-6.7
36-36	Explain thrust reversal	CLO 15	T2 6.6-6.7
37-39	Explain principle of operation of compressor	CLO 11	R1 5.1- 5.4
40-41	Discuss work done and pressure rise	CLO 13	R1 6.3- 6.4
42	Design velocity triangle	CLO 13	R1 5.1- 5.4
43	Define degree of reaction	CLO 11	R1 6.3- 6.4
44	Discuss free vortex and constant reaction design	CLO 04	R1 .1- 6.4

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
45-46	Discuss performance characteristics of centrifugal compressor	CLO 14	R1 5.1- 5.4
47	Calculate stage efficiency	CLO 15	R1 5.1- 5.4
48	Explain principle of operation of turbine	CLO 16	R1 7.1- 7.4
49	Discuss limitation of radial flow turbines	CLO 16	R1 7.1- 7.4
50-52	Discuss work done and pressure rise	CLO 17	R1 7.1- 7.4
53-54	Design velocity triangle	CLO 17	R1 7.1- 7.4
55-56	Discuss free vortex and constant reaction design	CLO 18	R1 7.1- 7.4
57-58	Solve problems in ramjet design	CLO 19	T1 5.3- 5.4
59	Explainflame stability in ramjet combustors	CLO 19	T1 5.3- 5.4
60	Discuss integral ram rockets	CLO 20	T1 5.3- 5.4

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Design of gas turbine for industrial applications	Guest lecture/Industria l visit	PO1,PO2,PO4	PSO2
2	Design and development of compressor for steam turbine application	Seminar/ Guest Lecture	PO3,PO4,	PSO2,
3	Design and development of micro gas turbine	Seminar/ Guest Lecture	PO3,PO4	PSO2,PSO3

Prepared by:

Dr. Maruthupandiyan K , Associate Professor

HOD, AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	FINIT	FINITE ELEMENT METHODS							
Course Code	AAE00	AAE009							
Programme	B.Tech	B.Tech							
Semester	v	V AE							
Course Type	Core								
Regulation	IARE -	R16							
			Theory	Practical					
Course Structure	Lect	ures	Tutorials	Credits	Laboratory	Credits			
3 1 4 -						-			
Chief Coordinator	Ms. Ch Ragha Leena, Assistant Professor								
Course Faculty		-	a Leena, Assistan , Assistant Profe						

I. COURSE OVERVIEW:

The Finite Element Method (FEM) is widely used in industry for analyzing and modeling structures and continua, whose physical behavior is described by ordinary and partial differential equations. The FEM is particularly useful for engineering problems that are too complicated to be solved by classical analytical methods. The main objective of this course is to introduce the mathematical concepts of the Finite Element Method for obtaining an approximate solution of ordinary and partial differential equations. In this course you will attend lectures on the fundamentals of the Finite Element Method. The learning process will be enhanced by completing assignments using mathematical software. You will also be introduced to a commercial Finite Element software package.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS002	1	Linear Algebra and Ordinary Differential	4
			Equations	
UG	AAE002	III	Theory of structures	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Finite Element Methods	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	×	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marka		
Type of Assessment	CIE Exam Quiz / AAT		- Total Marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Real time applications
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	Real time applications

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Assignments
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	2	Real time applications
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:

Ι	Understand the theoretical basics of governing equations and convergence criteria of finite element
	method.
II	Use the commercial Finite Element packages to build Finite Element models and solve a selected
	range of engineering problems.
III	Discuss the accurate Finite Element Solutions for the various field problems.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE009.01	CLO 1	Understand the numerical methods and development of mathematical models for physical system.	PO 1	3
AAE009.02	CLO 2	Identify mathematical model for solution of common engineering problems in the field of aeronautical, mechanical and civil	PO 2	2
AAE009.03	CLO 3	Understand the concepts of shape functions for one dimensional and quadratic elements, stiffness matrix and boundary conditions	PO 1 PO 2	2
AAE009.04	CLO 4	Remember the steps involved in finite element methods while solving the model of physical problem	PO 1	3
AAE009.05	CLO 5	Apply numerical methods for solving one dimensional bar problems	PO 2	2
AAE009.06	CLO 6	Identify the mathematical models for two dimensional, three dimensional truss and beam elements.	PO 1 PO 2	2
AAE009.07	CLO 7	Solve the equations of truss and beam elements	PO 2	2
AAE009.08	CLO 8	Calculate stress strain and strain energy for common engineering problems	PO 2	2
AAE009.09	CLO 9	Derive element matrix by different methods by applying basic laws in mechanics and integration by parts	PO 1 PO 2	2
AAE009.10	CLO 10	Demonstrate the ability to evaluate and interpret FEA analysis results for design and development purposes	PO 3 PO 5	2
AAE009.11	CLO 11	Formulate simple and complex problems into finite elements and solve structural and thermal problems	PO 2	2
AAE009.12	CLO 12	Derive the element stiffness matrices for triangular elements and axi- symmetric solids and estimate the load vector and stresses.	PO 2	2
AAE009.13	CLO 13	Understand the concepts of steady state heat transfer analysis for one dimensional slab, fin and thin plate.	PO 1 PO 2	2
AAE009.14	CLO 14	Understand the concepts of mass and spring system and derive the equations for various structural problems	PO 1 PO 2	2
AAE009.15	CLO 15	Calculate the mass matrices; Eigen values Eigen vectors and natural frequency for dynamic problems.	PO 2	2
AAE009.16	CLO 16	Model multi-dimensional structural and heat transfer problems by using automatic and fully automatic software such as ANSYS, NISA, NASTRAN.	PO 5	2

^{3 =} High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)							Pı Ot	rogram utcome	n Specif es (PSO	ic s)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3															
CLO 2		2												2		
CLO 3	3	2														
CLO 4	3												2			
CLO 5		2														
CLO 6	3	2														
CLO 7		2												1		
CLO 8	2	2														
CLO 9			3		1								2			
CLO 10			2		1											
CLO 11		2														
CLO 12		2												2		
CLO 13	2	2														
CLO 14	2	2											2			
CLO 15		2														
CLO 16					2											

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2, PO 3, PO 5	SEE Exams	PO 1, PO 2, PO 3, PO 5	Assignments	PO 1, PO 3	Seminars	PO 1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

SILLADU	
Unit-I	INTRODUCTION
conditions. Dimension	n to Finite Element Method for solving field problems. Stress and Equilibrium. Boundary Strain - displacement relations. Stress-strain relations for 2-D and3-D elastic problems. One al Problems: Finite element modeling coordinates and shape functions. Assembly of Global natrix and load vector. Finite element equations – Treatment of boundary conditions, Quadratic tions.
Unit-II	ANALYSIS OF TRUSSES AND BEAMS
	f Trusses: Stiffness matrix for plane Truss Elements, stress calculations and problems. Analysis of ment stiffness matrix for two noded, two degrees of freedom per node beam element and simple
Unit-III	CONTINUUM ELEMENTS
	nent modeling of two dimensional stress analysis with constant strain triangles and treatment of onditions. Estimation of load vector and stresses.
	nent modeling of Axi-symmetric solids subjected to Axi-symmetric loading with triangular wo dimensional four noded isoparametric elements and problems.
Unit-IV	STEADY STATE HEAT TRANSFER ANALYSIS
	e Heat Transfer Analysis: one dimensional analysis of slab, fin and two dimensional analysis of Analysis of a uniform shaft subjected to torsion.
Unit-V	DYNAMIC ANALYSIS
and Eigen convergence	Analysis: Formulation of finite element model, element –Mass matrices, evaluation of Eigen values Vectors for a stepped bar, truss. Finite element-formulation to 3D problems in stress analysis, ce requirements, mesh generation, techniques such as semi automatic and fully automatic use of ach as ANSYS,NISA,NASTRAN etc.
Text Book	s:
Printice 2. Rao. S.	hi. R. Chandrapatla, Ashok D. Belegundu, "Introduction to Finite Elements in Engineering", Hall India, 3rd Edition, 2003. S., "Finite Element Methods in Engineering," Butterworth and Heinemann, 2001. I.N., "An Introduction to Finite Element Method", McGraw Hill, 2000.
Reference	Books:
 K. J. B Robert Analys 	amurthy, C.S., "Finite Element Analysis", Tata McGraw Hill, 2000. athe, E. L. Wilson, "Numerical Methods in Finite Elements Analysis", Prentice Hall of India, 1985. D Cook, David S Malkus, Michael E Plesha, "Concepts and Applications of Finite Element is", 4th edition, John Wiley and Sons, Inc., 2003. Segerlind, "Applied Finite Element Analysis", 2nd Edition, John Wiley and Sons, Inc. 1984.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction to Finite element method for solving field problems	CLO 1	T1:1.2
			T2:1.4
2	Stress and equilibrium	CLO 8	T1:1.4
3	Stress and equilibrium, boundary conditions	CLO 8	T1:1.4
4	Strain – displacement relations		T1:1.7
5	Stress-strain relations for 2-d and 3-d elastic problems		T1:1.7
6	One dimensional problems: finite element modeling coordinates and	CLO 3	T1:3.1-3.3
	shape functions		T2:1.6
7	Assembly of global stiffness matrix and load vector	CLO 3	T1:3.4

Lecture No	-		Reference	
8-9	Problems on one dimensional elements	(CLOs) CLO 5	T1:3.4	
10	Quadratic shape functions	CLO 3	T1:3.9	
11	Introduction to truss and beams	CLO 6	T1:4.1-4.2	
			T2:9.1	
12-13	Analysis of trusses: stiffness matrix for plane truss elements	CLO 7	T1:4.2	
			T2:9.2	
14	Stiffness matrix for plane truss elements	CLO 7	T1:4.2 T2:9.2	
15	Stress calculations and problems on truss elements	CLO 8	T1:4.2	
	1		T2:9.2	
16	Problems on truss elements	CLO 7	T1:4.2	
			T2:9.2	
17	Analysis of beams: Introduction	CLO 6	T1:8.2	
18-19	Element stifferess motion for two words datus despress of free days non		T2:9.3	
18-19	Element stiffness matrix for two noded two degrees of freedom per node beam element	CLO 6	T1:8.3 T2:9.3	
20-21	Problems on beam elements	CLO 7	T1:8.3	
20 21			T2:9.3	
22	Finite element modeling of two dimensional stress analysis with constant strain triangles	CLO 12	T1:5.2	
23	Two dimensional stress analysis with constant strain triangles and	CLO 12	T1:5.3	
20	treatment of boundary conditions	010 12	11.5.5	
24	Stress analysis of constant strain triangles	CLO 12	T1:5.3	
25-26	Estimation of load vector and stresses	CLO 12	T1:5.3	
27	Introduction to finite element modeling of axisymmetric solids	CLO 12	T1:6.2	
28	Axi-symmetric solids subjected to axi-symmetric	CLO 12	T1:6.3	
	Loading with triangular elements			
29-30	Load vector for axi symmetric solids	CLO 12	T1:6.3 T2:13-3	
31	Two dimensional four noded isoparametric elements	CLO 12	T1:7.2	
32-33	Problems on axisymmetric solids	CLO 12	T1:10.8	
34	Numerical integration and problems	CLO 09	T1:7.3	
35-36	Introduction to steady state heat transfer analysis	CLO 11	R2:10.1 T2:13-2	
37	One dimensional analysis of slab and problems	CLO 13	T1:10.2	
57	One dimensional analysis of stab and problems	CLO 15	T2:13-3	
38	Fin and two dimensional analysis of thin plate	CLO 13	T1:10.2	
			T2:13-1	
39	Fin and two dimensional analysis of thin plate and problems	CLO 08	T1:10.2	
			R1:13-2	
40-41	Problems on fins and thin plate	CLO 13	T1:10.2	
42	Anglusia of a uniform shaft subjected to togging	CL O 12	T2:14-1	
42	Analysis of a uniform shaft subjected to torsion	CLO 13	T1:10.3 T2:14-2	
43	Introduction to dynamic analysis C		T1:11.1	
44-45	Formulation of finite element model	CLO 13	T2:12.1 T1:11.2	
46 47			R1:12.2	
46-47	Derivation of element mass matrices	CLO 14	T1:11.3 T2:12.3	
48-49	Evaluation of eigen values and eigen vectors for a stepped bar	CLO 15	T1:11.3	
50-51	Evaluation of eigen values and eigen vectors for truss	CLO 15	T2:12.3 T1:11.4	
			T2:12.3	
52-53	Finite element formulation to 3d problems in stress analysis	CLO 15	T1:12.1	

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
54	Convergence requirements	CLO 16	T1:12.2 R1:22.1
55-56	Mesh generation, techniques such as semi automatic and fully automatic use of software such as ANSYS,NISA,NASTRAN etc.	CLO 16	T1:12.2 T2:22.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Gain information about space frames used in the modeling of car body and bicycle frames	Guest Lecture/Seminar	PO1,PO2	PSO 2
2	Encourage students to perform analysis on composite materials using FEM applications	NPTEL/Projects	PO 5	PSO 2, PSO 3

Prepared by:

Ms. Ch.Ragha Leena, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AIRCR	AIRCRAFT SYSTEMS AND CONTROL									
Course Code	AAE01	AAE010									
Programme	B.Tech	B.Tech									
Semester	v	V AE									
Course Type	Core	Core									
Regulation	IARE -	IARE - R16									
	Theory Practical										
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits					
	3		-	3	-	-					
Chief Coordinator	Ms. G	Srava	anthi, Assistant F	Professor							
Course Faculty	Ms. G Sravanthi, Assistant Professor Mr. P.Anudeep, Assistant Professor										

I. COURSE OVERVIEW:

Aircraft Systems is a course of primary important to Aeronautical Engineering students. The aim is to impart the meaning of system in generic .The course covers, the main branching of Aircraft System Systems sub systems based on functionalities .These describes the working principles and their importance to aircraft. The course also gives basic knowledge of design procedures, failure severities Safety measures of system.

II. COURSE PRE-REQUISITES:

Level	Course Code Semester		Prerequisites	Credits
UG	AAE003	III	Fluid Mechanics And Hydraulics	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Aircraft Systems And Control	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs				
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos				
×	Open Ended Experiments										

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks			
Type of Assessment	CIE Exam	Quiz / AAT			
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by		
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments		
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminars		
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Seminars		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Assignments
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	2	Seminars
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	1	Assignments
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:									
Ι	Explain the concept and meaning of system and classify the various systems required for aircraft and									
	their contribution in order to fulfill the aircraft tasks.									
II	Describe the various types of Electrical power generations and distribution in aircraft and impart the									
	knowledge of pneumatic, hydraulic and environmental control system.									
III	Demonstrate the different flight control actuators and flight control system and fly-by-wire control									
	laws and give knowledge about the landing gears systems and brake management system.									
IV	Explain the concept of different aircraft gas turbine engines and their control systems and describe the									
	fuel system characteristics and their operating modes and knowledge about the fuel safety management.									

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE0010.01	CLO1	Define the meaning of the system and its	PO1	<u>2</u>
	0201	characteristics and identify different types of	101	-
		aircraft systems.		
AAE0010.02	CLO2	Describe the various electrical power	PO1	2
AAL0010.02	CLO2	-	101	2
		generations in the aircraft and discover more electric aircraft.		
A A E 0010 02	CT O2		DO1	2
AAE0010.03	CLO3	Estimate the electrical power requirements	PO1	2
		and can optimize the load distribution.		
AAE0010.04	CLO4	Describe the importance of hydraulic	PO1	2
		systems and its components and develop		
		hydraulic systems.		
AAE0010.05	CLO5	Illustrate the importance and criticality of	PO3	2
		landing gears.		
AAE0010.06	CLO6	Recognize the applications of pneumatic	PO2	2
		systems and the application of the bleed air.		
AAE0010.07	CLO7	Classify the various types of engine control	PO3	2
		system including advanced digital controls.		
AAE0010.08	CLO8	Identify important flight control operations	PO2	1
		and selects suitable flight control actuations.		
AAE0010.09	CLO9	Demonstrate the various types of air	PO3	1
		conditioning systems and vapour cycle		
		systems.		
AAE0010.10	CLO10	Identify the environmental control systems	PO3	3
	02010	relating to aircraft systems.		-
AAE0010.11	CLO11	Classify the types of hydraulic fluids applied	PO2	2
	CLOII	in aircraft industry and advancement in it.	102	2
AAE0010.12	CLO12	Estimate the various fuel inerting systems	PO3	3
AAL0010.12	CL012		105	5
A A E 0010 12	CL 012	and indications for aircraft systems.	DO2	1
AAE0010.13	CLO13	Illustrate the importance of fly-by-wire	PO2	1
	CT 01	technology in aircraft systems.	DOG	
AAE0010.14	CLO14	Describe the pneumatics systems and its	PO3	1
A A E 0010 15	CL 015	components.	DO2	2
AAE0010.15	CLO15	Estimate the various engine performances	PO3	2
		and their application in aircraft systems.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	2												1			
CLO 2	1															

				Prog	ram O	utcon	nes (P	Os)				Program Specific Outcomes (PSOs)			
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
2													2		
2													1		
		2											3		
	2													1	
		2												1	
	1												3		
		1										3			
		3												1	
	2											1			
		3										2			
	1													2	
		1										1			
		2											2		
	2 2	2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	PO1 PO2 PO3 PO4 2 . . 2 . . 2 . . 2 . . 2 . . 2 . . 2 . . 2 . . 1 . . 1 . . 2 . . 1 . . 2 . . 3 . . 1 . . 1 . . 1 . . 1 . . 1 . . 1 . . 2 . . 1 . . 2 . . 1 . . 2 . . 2 . . 2 . . 3 .	PO1 PO2 PO3 PO4 PO5 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 2 1 2 1 1 2 2 1 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2	PO1 PO2 PO3 PO4 PO5 PO6 2 2 2 2 2 2 2 1 1 2 1 2 2 1 1 <td< td=""><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 1 1 1 1 1 1 2 2 1 2 1 1</td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 2 1 1</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2 2 2 2 2 1 1 2 3 1 1 </td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2 </td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 . <</td><td>Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1</td><td>Program Outcomes (POS) Pool PO1 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 <th1< th=""></th1<></td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03</td></td<>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2 2 2 2 2 1 1 2 3 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 . <	Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1	Program Outcomes (POS) Pool PO1 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 <th1< th=""></th1<>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO1, PO2, PO3	SEE Exams	PO1, PO2, PO3	Assignments	PO1	Seminars	PO2, PO3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I INTRODUCTION TO AIRCRAFT SYSTEMS

System concepts, everyday examples of systems, sub-systems; Generic system definition, inputs, outputs, feedback, external influence. Aircraft systems- airframe systems, vehicle systems, avionics systems, mission systems and their sub-systems; Specification of requirements, mission requirements, performance requirements; Operating environment conditions.

UNIT-II EI	LECTRICAL SYSTEMS AND AIR CONDITIONING, PRESSURIZING SYSTEMS					
Electrical loads in aircraft. Electrical power generation and control- DC, AC- types. Power distribution primary, secondary. Power conversion and energy storage; Load protection; Electrical load management systems, variable speed constant frequency (VSCS) cycloconverter, 270 V DC systems; Basic air cycle systems; Vapour cycle systems, boost-strap air cycle system; Evaporative vapour cycle systems; Evaporative air cycle systems; Fire protection systems, deicing and anti icing systems.						
UNIT-III H	YDRAULIC SYSTEMS AND PNEUMATIC SYSTEMS					
Hydraulic systems: Study of typical workable system, function, merits, application, system loads, design requirements; Principal components; Hydraulic fluid: required properties, operating fluid pressures, temperatures, and flow rates; Hydraulic piping, pumps, reservoir, accumulator; Landing gear and brake management systems. Pneumatic systems ; Advantages;- Working principles ; Typical air pressure system ; Brake system; Typical pneumatic power system ; Components, landing gear systems ; Classification.						
UNIT-IV EN	NGINE CONTROL AND FUEL SYSTEMS					
flow, exhaust ga systems, full au need, types, effe	eration of aircraft gas turbine engines; Engine - airframe interfaces; Control of fuel flow, air as flow- need, means, system parameters, basic inputs and outputs; Limited authority control thority control systems- examples; Engine monitoring- sensors, indicators; Power off takes- ect on engine performance; Fuel systems- characteristics, components, operating modes; Fuel inserting system.					
UNIT-V AI	IRPLANE CONTROL SYSTEMS					
powered flight c Modern control control technolo	Flight control systems- primary and secondary flight control conventional systems; Power assisted and fully powered flight controls; Power actuated systems; Engine control systems; Push pull rod system; Components; Modern control systems; Digital fly by wire systems , control laws, implementation; Auto pilot system active control technology, communication and navigation systems instrument landing systems; Control linkages, actuation- types, description and redundancy.					
Text Books:						
Integrationl, 2. Moir, I. and	1. Moir, I. and Sea bridge, A, —Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration ^{II} , John Wiley, 3rd Edition 2008.					
Reference Book	xs:					
edition, 199 2. Harris, D, –	I.J., —Aircraft Instruments and Integrated Systems ^{II} , Longman Scientific &Technical 10th 2. –Flight Instruments and Automatic Flight Control Systems ^{II} , 6th edition, 2004. "Pneumatic and Hydraulic Systems", Butterworth-Heinemann.					

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-3	Aircraft systems- airframe systems.	CLO 1	T2:2.4
4-7	vehicle systems, avionics systems, mission systems and their sub- Systems.	CLO 2	T2:2.4.3
8-10	Specification of requirements- mission requirements, performance requirements	CLO 2	T2:2.5
11-13	Operating environment conditions.	CLO 3	T2:7.4
14-15	Electrical loads in aircraft.	CLO 5	T1:3.1
16-18	Electrical power generation and control- DC, AC- types.	CLO 5	T1:3.1.1
19-20	Power distribution- primary, secondary	CLO 7	T1:3.2
21-22	Power conversion and energy storage. Load protection.	CLO 7	T1:3.4

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
23-25	Advanced systems- electrical load management systems, variable speed constant frequency (VSCS), Cycloconverter, 270 V DC systems.	CLO 7	T1:3.5
26-28	Basic air cycle systems, Vapour cycle systems, boost-strap air cycle system.	CLO 7	T1:4.2
29-31	Evaporative vapour cycle systems, Evaporative air cycle systems, Oxygen systems.	CLO 8	T1:4.3
32	Fire protection systems, deicing and anti icing systems.	CLO 8	T1:4.5
33	Aircraft hydraulic systems- function, merits, application, system loads, design requirements.	CLO 8	T1:5.1
34	Principal components, description, applications.	CLO 8	T1:5.2
35	Hydraulic fluid- required properties, operating fluid pressures, temperatures, and flow rates Hydraulic piping, pumps, reservoir, accumulator	CLO 8	T1:5.3
36	Landing gear and brake management systems, Brake management systems.	CLO 8	T1:5.9
37	Pneumatic systems, advantages, working principles.	CLO 9	T1:6.1
38	Typical air pressure system, Brake system, Typical pneumatic power system, Components.	CLO 9	T1:6.2
39	Landing gear systems, Classification.	CLO 9	T1:5.9
40	Principle of operation of aircraft gas turbine engines.	CLO 10	T1:9.1
41	Engine - airframe interfaces; Control of fuel flow, air flow, exhaust gas flow- need, means, system parameters, basic inputs and outputs	CLO 11	T1:9.2
42	Limited authority control systems, full authority control systems- examples. Engine monitoring- sensors, indicators.	CLO 11	T1:9.3
43	Power off takes- need, types, effect on engine performance. Fuel systems- characteristics, components, operating modes.	CLO 12	T1:9.4
44	Flight control systems- primary and secondary flight control conventional systems.	CLO 13	T1:9.5
45	Systems control linkages, actuation- types, and description.	CLO 14	T1:3.6
46	Redundancy. Fly-by-wire control- control laws, Fly- by-wire control- control laws, implementation	CLO 15	T1:3.7
47	Auto pilot system active control technology, communication and navigation systems instrument landing systems	CLO 15	T1:3.8,3. 9

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Gain information about autopilot system active control technology.	Seminars	PO3	PSO 2
2	Encourage students to make case studies on different types of engine instruments, flight instruments and navigation instruments.	Guest Lecture	PO2	PSO1,PSO3

Prepared by:

Ms. G Sravanthi, Assistant Professor Mr. P Anudeep, Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AIRCRA	AIRCRAFT PERFORMANCE					
Course Code	AAE011	AAE011					
Programme	B.Tech	B.Tech					
Semester	V A	V AE					
Course Type	Core						
Regulation	IARE - R16						
			Theory		Practical		
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Ms. G Sv	vath	i, Assistant Prof	essor		L	
Course Faculty	Ms. G Swathi, Assistant Professor Mr. A Rathan Babu, Assistant Professor						

I. COURSE OVERVIEW:

Flight mechanics is the science that investigates the control of aircraft and other flying vehicles. From the time of the Wright brothers it was recognized that flight without control is impossible. Since then, several different concepts for controlling aircraft flight have been devised including control surfaces, deformable surfaces, rockets and others. This course introduces some of these concepts and describes their operation, as well as the degree of stability that they can provide. Both aircraft and helicopters are addressed. Modern aircraft control is ensured through automatic control systems. Their role is to increase safety, facilitate the pilot's task and improve flight qualities. The course will introduce modern aircraft control and discuss some of its objectives and applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Credits	
UG	AAE001	III	Introduction to aerospace engineering	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Aircraft Performance	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Theory	Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiai ks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignments
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Assignments, Real time applications
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Seminars

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	1	Seminars, Assignments
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	3	Tutorials
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Learn the different Regimes of aircraft and performance requirements at different atmospheric
	conditions.
II	Understand the different type of velocities and gives differences between stall velocity and maximum
	and minimum velocities.
III	Estimate the time to climb and descent and gives the relation between rate of climb and descent and
	time to climb and descent at different altitudes.
IV	Illustrate the velocity and radius required for different type of maneuvers like pull-up, pull down and
	steady turn.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE011.01	CLO 1	Apply Remember and understand the atmospheric	PO 1	3
		conditions that are suitable for better performance of		
		an aircraft.		
AAE011.02	CLO 2	Adapt the basic Remember of mathematics, science	PO 1	3
		and engineering for problem solving.	PO 2	
AAE011.03	CLO 3	Describe different atmospheric models that an	PO 1	3
		aircraft encounters in its real-time practice.		
AAE011.04	CLO 4	Demonstrate different methods for the measurement	PO 2	3
		of air data and their respective systems working		
		principle.		
AAE011.05	CLO 5	Describe mission profiles that an aircraft adapts	PO 1	2
		depending upon its category and requirements.		
AAE011.06	CLO 6	Understand different phases of design process from	PO 3	3
		performance standpoint.		
AAE011.07	CLO 7	Identify definition of aircraft performance for	PO 1	2
		different categories of aircraft.		
AAE011.08	CLO 8	Explain the force system of the aircraft and the	PO 2	3
		development of equations of motion.		
AAE011.09	CLO 9	Evaluate the performance of aircraft in cruising phase	PO 2	3
		and appropriate conclusions are drawn.		
AAE011.10	CLO 10	Illustrate the climb and descent performance of the	PO 2	3
		aircraft and its performance parameters are measured.		
AAE011.11	CLO 11	Understand the concept behind various methods that	PO 2	3
		are employed during takeoff and landing phases		
		depending upon its mission.		
AAE011.12	CLO 12	Evaluate the factors that enhance the performance of	PO 1	2
		aircraft during takeoff and landing.		
AAE011.013	CLO 13	Understand the maneuver performance of typical	PO 1	2
		transport and military aircrafts.		
AAE011.14	CLO 14	Understand the parametric performance data analysis	PO 2	3
		for different phases of aircraft and various methods		
		of measurement.		
AAE011.15	CLO 15	Understand the concept of flight planning, fuel	PO 3	3
		planning and how it affects the performance of		
		aircraft.		
AAE011.16	CLO 16	Understand the propulsive force characteristics like	PO 1	2
		thrust that affects the aircraft performance.		
AAE011.17	CLO 17	Describes the flight measurement of performance,	PO 2	3
		with detailed sections on airworthiness certification		
		and the performance manual.		
AAE011.18	CLO 18	Evaluate the full law calibration equations that are	PO 2	3
		employed to the aircraft instruments to derive air		
		data.		
AAE011.19	CLO 19	Understand the aerodynamic force characteristics like	PO 1	3
		lift and drag that affects the aircraft performance.		
AAE011.20	CLO 20	Evaluate the full equation of motion, which are	PO 2	3
		developed and used in the expressions for maneuver		
		performance.		

^{3 =} High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	rning Program Outcomes (POs)										Specif s (PSO					
Outcomos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			PSO3	
CLO 1	3												2			
CLO 2	3	3												3		
CLO 3	3												2			
CLO 4		3												3		
CLO 5	2												1			
CLO 6			3										3			
CLO 7	2												1			
CLO 8		3												3		
CLO 9		3												3		
CLO 10		3												3		
CLO 11		3												3		
CLO 12	2												1			
CLO 13	2												1			
CLO 14		3												3		
CLO 15			3										3			
CLO 16	2												1			
CLO 17		3												3		
CLO 18		3												3		
CLO 19	3												2			
CLO 20		3												3		

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2, PO 3	SEE Exams	PO 1, PO 2, PO 3	Assignments	PO 1, PO 2	Seminars	PO 3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	INTRODUCTION TO AIRCRAFT PERFORMANCE
performance data compu estimation, o engines, var	d design mission of an aircraft; Performance requirements and mission profile; Aircraft design e, the standard atmosphere; Off-standard and design atmosphere; Measurement of air data; Air ters; Equations of motion for performance - the aircraft force system; Total airplane drag- drag reduction methods; The propulsive forces, the thrust production engines, power producing iation of thrust, propulsive power and specific fuel consumption with altitude and flight speed; m drag speed, minimum power speed; Aerodynamic relationships for a parabolic drag polar.
UNIT-II	CRUISE PERFORMANCE
producing e methods- co	nd minimum speeds in level flight; Range and endurance with thrust production, and power ngines; Cruise techniques: constant angle of attack, constant mach number; constant altitude, mparison of performance. The effect of weight, altitude and temperature on cruise performance; rmance with mixed power-Plants.
UNIT-III	CLIMB AND DESCENT PERFORMANCE
-	of Climb and descent performance, Climb and descent technique generalized performance thrust producing, power producing and mixed power plants, maximum climb gradient, and climb
climbs. Mea	ht and specific excess power, energy methods for optimal climbs - minimum time, minimum fuel surement of best climb performance. Descent performance in Aircraft operations. Effect of wind 1 decent performance.
UNIT-IV	AIRCRAFT MANEUVER PERFORMANCE
Instantaneou the pull-up,	neuvers- turn performance- turn rates, turn radius- limiting factors for turning performance. Its turn and sustained turns, specific excess power, energy turns. Longitudinal aircraft maneuvers, maneuvers. The maneuver envelope, Significance. Maneuver boundaries, Maneuver performance Aircraft, transport Aircraft.
UNIT-V	SAFETY REQIREMENTS – TAKEOFF AND LANDING PERFORMANCE AND FLIGHT PLANNING
effect. Take landing, air	of takeoff distances. The effect on the takeoff distance of weight wind, runway conditions, ground off performance safety factors. Estimation of landing distances. The discontinued landing, Baulk safety procedures and requirements on performance. Fuel planning fuel requirement, trip fuel, t effects, reserve, and tankering.
Text Books	:
Edition, 2. Eshelby,	n, J.D. Jr., "Aircraft Performance and Design", International Edition McGraw Hill, 1st 1999, ISBN: 0 M.E., "Aircraft Performance theory and Practice", AIAA Education Series, AIAA, 2nd 2000, ISBN: 1
Reference H	Books:
ISBN: 0 2. Yechout Edition,	t, T.R. et al., "Introduction to Aircraft Flight Mechanics", AIAA Education Series, AIAA, 1st 2003, ISBN: 1
3. Shevel,	R.S., "Fundamentals of Flight, Pearson Education", 2nd Edition, 1989, ISBN: 81

XIV. COURSE PLAN:

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	The role and design mission of an aircraft; Performance requirements and mission profile	CLO 05, CLO 07	T2:1.1-12
2	Aircraft design performance	CLO 06	T2:1.3-1.5
3	The standard atmosphere; Off-standard and design atmosphere; Measurement of air data; Air data computers	CLO 01, CLO 03, CLO 04	T2:2.2-2.4
4	Equations of motion for performance - the aircraft force system	CLO 02, CLO 08	T2:.3.1-3.2
5	Total airplane drag- estimation, drag reduction methods	CLO 19	T2:3.3
6	The thrust production engines, power producing engines	CLO 16	T2:3.4
7	Variation of thrust, propulsive power and specific fuel consumption with altitude and flight speed	CLO 16	T2:3.4
8	The minimum drag speed, minimum power speed; Aerodynamic relationships for a parabolic drag polar	CLO 02, CLO 19	T2:3.3
9-10	Maximum and minimum speeds in level flight	CLO 09	T2:4.2
11-13	Cruise techniques: constant angle of attack, constant mach number; constant altitude, methods	CLO 09	T2:4.3
14	Comparison of performance	CLO 09	T2:4.3
15-16	The effect of weight, altitude and temperature on cruise performance	CLO 02, CLO 09	T2:4.3
17	Cruise performance with mixed power-Plants	CLO 09	T2:4.5
18-19	Importance of Climb and descent performance	CLO 10	T2:5.1
20-22	Climb and descent technique generalized performance analysis for thrust producing	CLO 02, CLO 10	T2:5.2,5.5
23-24	Power producing and mixed power plants	CLO 10	T2:5.2
24-25	maximum climb gradient, and climb rate	CLO 02, CLO 10	T2:5.2
26	Energy height and specific excess power	CLO 10	T2:5.2
27-28	Energy methods for optimal climbs - minimum time, minimum fuel climbs	CLO 10	T2:5.3
29-30	Measurement of best climb performance and descent performance in Aircraft operations	CLO 10	T2:5.4
31	Lateral maneuvers- turn performance- turn rates, turn radius	CLO 20	T2:7.1
32	Limiting factors for turning performance	CLO 20	T2:7.1
33	Instantaneous turn and sustained turns, specific excess power, energy turns	CLO 20	T2:7.1
34	Longitudinal aircraft maneuvers, the pull-up, maneuvers	CLO 20	T2:7.3
35	The maneuver envelope, Significance	CLO 20	T2:7.2
36	Maneuver boundaries	CLO 20	T2:7.2.1- 7.2.2

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
37	Maneuver performance of military Aircraft, transport Aircraft	CLO 13	T2:7.4-7.5
38	Estimation of takeoff distances	CLO 11	T2:6.2
39	The effect on the takeoff distance of weight wind, runway conditions, ground effect	CLO 12	T2:6.2.2
40	Takeoff performance safety factors	CLO 12	T2:9.3.3
41	Estimation of landing distances	CLO 11	T2:6.3
42	The discontinued landing, Baulk landing	CLO 12	T2:9.6.3
43	Air safety procedures and requirements on performance	CLO 14	T2:9.3.3
44	Fuel planning fuel requirement, trip fuel	CLO 15	T2:9.8
45	Environment effects, reserve, and tankering	CLO 15	T2:9.8

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Application of knowledge and skills in the estimation of aircraft performance parameters	Seminars / Guest Lectures / NPTEL	PO 2, PO 4	PSO 2
2	Broad knowledge of aircraft performance measurement and data handling	Seminars / Guest Lectures / NPTEL	PO 2, PO 4	PSO 2

Prepared by:

Ms. G Swathi, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	НЕАТ	HEAT TRANSFER									
Course Code	AAE5	AAE515									
Programme	B. Tec	B. Tech									
Semester	v	AE									
Course Type	Electiv	Elective									
Regulation	IARE-	R16									
			Theory		Practic	cal					
Course Structure	Lectures		Tutorials	Credits	Laboratory	Credits					
3 - 3 -						-					
Chief Coordinator	Dr. P. Srinivas Rao, Professor, Department of Aeronautical Engineering										
Course Faculty	Dr. P.	Sriniv	vas Rao, Professo	r, Department	of Aeronautical Eng	gineering					

I. COURSE OVERVIEW:

Heat transfer is the flow of thermal energy driven by thermal non-equilibrium, commonly measured as a heat flux, i.e. the heat flow per unit time at a control surface. This course focuses on the problems and complexities of heat transfer and emphasizes on analysis using correlations. The course assumes basic understanding of thermodynamic and fluid mechanics and exposure to differential equations and methods of solutions. Topics include modes of heat transfer and their laws, boundary conditions, conduction heat transfer – three dimensional, one dimensional steady and unsteady without heat generation, variable thermal conductivity, fin analysis, lumped heat capacity systems, free and forced convection with dimensional analysis, laminar boundary layer theory, heat exchangers, heat transfer with phase change and radiation heat transfer.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME003	IV	Fluid Mechanics	4
UG	AHS002	III	Thermodynamics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
HEAT TRANSFER	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	✔ Quiz		~	Assignments	×	MOOCs				
~	LCD / PPT	LCD / PPT 🖌 Semin		×	Mini Project	~	Videos				
×	Open Ended Experiments										

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Theory				
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks			
CIA Marks	25	05	30			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignments
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem Analysis: Identify, formulate, review research	2	Seminars
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		
PO 12	Life-long learning: Recognize the need for, and have the	2	Videos
	preparation and ability to engage in independent and life-long		
	learning in the broadest context of technological change		
	3 - High: 2 - Modium: 1 - Low		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	1	Lectures,
	aeronautical/aerospace engineering in innovative, dynamic and		Assignments
	challenging environment for design and development of new		
	product		
PSO 2	Problem-solving Skills: Imparted through simulation	1	Lectures,
	language skills and general purpose CAE packages to solve		Assignments
	practical, design and analysis problems of components to		
	complete the challenge of airworthiness for flight vehicles		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice		
	to fabricate and test and develop the products with more		
	innovative technologies		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to: I Understand the basic modes of heat transfer like conduction, convection radiation with and without phase change in solid liquids and gases II Design and analyze thermal fluidic components in engineering systems to energy mechanisms (in the form of heat transfer) for steady and unsteady state. III Conduct experiments in laboratories and analyze the results with theoretical ones to evolve research oriented projects in the field of heat transfer as well as propulsion.

IX. COURSE LEARNING OUTCOMES (CLOs):

AAE515.01 CLO 1 Understand basic concepts of modes of heat transfer and Fourier Law and First thermodynamic law. PO 1 3 AAE515.02 CLO 2 Remember the basic laws of energy involve heat transfer mechanisms PO 1 3 AAE515.03 CLO 3 Understand the physical system to convert into mathematical model depending upon the mode of Heat Transfer PO 2 2 AAE515.04 CLO 4 Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems. PO 1 3 AAE515.05 CLO 5 Understand heat transfer process and systems phy applying conservation of mass and energy into a system. PO 1 3 AAE515.06 CLO 6 Understand heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation. PO 2 1 AAE515.08 CLO 8 Understand phase change heat transfer PO 2, 2 2 AAE515.09 CLO 8 Understand phase change heat transfer PO 2, 2 2 AAE515.09 CLO 8 Understand phase change heat transfer PO 2, 2 2 AAE515.09 CLO 8 Understand phase change heat transfer PO 2, 2 2 AAE515.10 CLO 10 Understand the concepts of black a	CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE515.02CLO 2Remember the basic laws of energy involve heat transfer mechanisms.PO 1AAE515.03CLO 3Understand the physical system to convert into mathematical model depending upon the mode of Heat Transfer.PO 13AAE515.04CLO 4Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems.PO 13AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.07CLO 7Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 21AAE515.07CLO 7Understand the physical mechanisms involved in conjunction with conservation of energy to develop the heat diffusion equation.PO 22AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 22AAE515.09CLO 9Utilize solution nethods for the heat diffusion 		CLO 1			
AAE515.02 CLO 2 Remember the basic laws of energy involve heat transfer mechanisms. PO 1 3 AAE515.03 CLO 3 Understand the physical system to convert into mathematical model depending upon the mode of Heat Transfer. PO 1 3 AAE515.04 CLO 4 Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems. PO 1 3 AAE515.05 CLO 5 Understand heat transfer process and systems by applying conservation of mass and energy into a system. PO 1 3 AAE515.06 CLO 6 Understand the physical mechanisms involved in conduction with conservation of mass and energy into a system. PO 1 3 AAE515.07 CLO 7 Understand the physical mechanisms involved in conduction with conservation of energy to develop the heat diffusion equation. PO 2 1 AAE515.08 CLO 8 Understand phase change heat transfer involves boiling and condensation. PO 1 2 AAE515.09 CLO 9 Utilize solution methods for the heat diffusion equation to analyze ID, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods. PO 1 3 AAE515.10 CLO 10 Understand the concepts of black and gray body radiation heat transfer. PO 1 3			-		
AAE515.03CLO 3Understand the physical system to convert into mathematical model depending upon the mode of Heat Transfer.PO 13AAE515.04CLO 4Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems.PO 22AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.07CLO 7Understand heat transfer process and systems in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 22AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 13AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer. PO 190 13AAE515.12CLO 14Understand the physical phenomena associated with convection and usassociated with convection and usand subjes.PO 13AAE515.13CLO 14Understand			thermodynamic law.		
AAE515.03 CLO 3 Understand the physical system to convert into mathematical model depending upon the mode of Heat Transfer. PO 1 3 AAE515.04 CLO 4 Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems. PO 2 2 AAE515.05 CLO 5 Understand heat transfer process and systems by applying conservation of mass and energy into a system. PO 1 3 AAE515.06 CLO 6 Understand heat transfer process and systems by applying conservation of mass and energy into a system. PO 2 1 AAE515.07 CLO 7 Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation. PO 2 2 AAE515.08 CLO 8 Understand phase change heat transfer PO 2, PO 12 2 AAE515.09 CLO 9 Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods. PO 1 3 AAE515.10 CLO 10 Understand the basic applications of heat exchangers and its analysis. PO 1 3 AAE515.11 CLO 12 Conduct experiments and analyze data PO 1, involving all the modes of heat transfer. PO 1	AAE515.02	CLO 2	Remember the basic laws of energy involve	PO 1	3
AAE515.04CLO 4Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems.PO 2 and any applying conservation of Meat Transfer mechanism in both steady and unsteady state problems.PO 1 3 3AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13 a any applying conservation of mass and energy into a system.AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13 a applying conservation of mass and energy into a system.AAE515.07CLO 7Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 21AAE515.08CLO 8Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation equation.PO 22AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the basic applications of heat econcepts of Heat Transfer mechanisms.PO 13AAE515.14			heat transfer mechanisms		
AAE515.04CLO 4Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems.PO 22AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.07CLO 7Understand heat transfer process and system of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 22AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 22AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 13AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the basic applications of heat econcepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and	AAE515.03	CLO 3	Understand the physical system to convert	PO 1	3
AAE515.04CLO 4Understand the thermal response of engineering systems for application of Heat Transfer mechanism in both steady and unsteady state problems.PO 22AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.07CLO 7Understand heat transfer process and system of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 22AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 22AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 13AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the basic applications of heat econcepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and			into mathematical model depending upon the		
AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 7Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 21AAE515.07CLO 7Understand heat transfer process and systems of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Uilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyte data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer.PO 13AAE515.14CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO					
AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO13AAE515.07CLO 7Understand heat transfer process and systems of energy to develop the heat diffusion equation.PO21AAE515.08CLO 8Understand the physical mechanisms involved in conduction heat transfer.PO 2, PO 122AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 22AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.12CLO 11Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO	AAE515.04	CLO 4	Understand the thermal response of	PO 2	2
AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO13AAE515.07CLO 7Understand heat transfer process and systems or asystem.PO13AAE515.07CLO 7Understand the physical mechanisms involved in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 12AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 13AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.11CLO 112Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 22AAE5			engineering systems for application of Heat		
AAE515.05CLO 5Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 13AAE515.07CLO 7Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO 21AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 22AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 22AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze ID, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 22AAE515.15CLO 15Calculate local and glob					
AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO13AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 2, PO 122			unsteady state problems.		
AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO13AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 1, PO 2, PO 1, PO 2, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 3, PO 2, PO 1, PO 2, <b< td=""><td>AAE515.05</td><td>CLO 5</td><td>Understand heat transfer process and systems</td><td>PO 1</td><td>3</td></b<>	AAE515.05	CLO 5	Understand heat transfer process and systems	PO 1	3
AAE515.06CLO 6Understand heat transfer process and systems by applying conservation of mass and energy into a system.PO13AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 11Understand the basic applications of heat involving all the modes of theat erochepts in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 2, PO 2, PO 2, PO 2, PO 2, PO 2, PO 12					
AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze ID, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.11CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, A23AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 123AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 2, PO 2, PO 2, PO 122			· · · · ·		
AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 13AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 2, PO 2, PO 2,2	AAE515.06	CLO 6		PO1	3
AAE515.07CLO 7Understand the physical mechanisms involved in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 21AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 2, PO 2, PO 2, PO 1, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 1, PO 2,<					
in conduction heat transfer. Each student can Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 2, PO 12AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 2			· · ·		
Fourier law in conjunction with conservation of energy to develop the heat diffusion equation.PO 2, PO 2, PO 12AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 1, PO 123AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 2, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 2, PO 2, PO 1, PO 2, PO 2, PO 2, PO 2, PO 2, PO 2, PO 12	AAE515.07	CLO 7		PO 2	1
AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 22AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122					
AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 22AAE515.11CLO 11Understand the concepts of black and gray body radiation heat transfer.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 23AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122					
AAE515.08CLO 8Understand phase change heat transfer involves boiling and condensation.PO 2, PO 122AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 2, PO 2, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 1, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 1, PO 2, PO 1, PO 2, PO 1, PO 2, PO 2, PO 2, PO 2, PO 2, PO 1, PO 2, PO 2, PO 1, PO 2, PO 1,<					
AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transfer.PO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, AAE515.143AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 2, PO 2, PO 122	A A E 5 1 5 0 9	CLO 9	*	DO 2	2
AAE515.09CLO 9Utilize solution methods for the heat diffusion equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transferPO 22AAE515.11CLO 11Understand the concepts of black and gray body radiation heat transferPO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 22AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122	AAE515.08	CLO 8			2
equation to analyze 1D, 2D, steady and transient problems, including the use of thermal circuits and analytical and numerical methods.PO 2AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transferPO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 2, PO 2, PO 122		GT 0 0			
transient problems, including the use of thermal circuits and analytical and numerical methods.PO 22AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transferPO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 2, PO 2, PO 122	AAE515.09	CLO 9		PO 2	2
AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transferPO 22AAE515.11CLO 11Understand the concepts of black and gray body radiation heat transferPO 13AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, A3AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 2, PO 2, PO 122AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122					
AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transferPO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 13AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122					
AAE515.10CLO 10Understand the concepts of black and gray body radiation heat transferPO 22AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, AAE515.143AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 2, PO 123AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122					
body radiation heat transferAAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 1, PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 2, PO 2, PO 122AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122	AAE515 10	CLO 10		PO 2	2
AAE515.11CLO 11Understand the basic applications of heat exchangers and its analysis.PO 13AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 2, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122	10.10.10			102	2
AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123 PO 12AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122	A A D 5 1 5 1 1	CT 0 11	-	DO 1	2
AAE515.12CLO 12Conduct experiments and analyze data involving all the modes of heat transfer.PO 1, PO 123 PO 12AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122	AAE515.11	CLO II		POI	3
involving all the modes of heat transfer.PO 12AAE515.13CLO 13Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms.PO 13AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122					
AAE515.13 CLO 13 Remember the concepts to work out real time problems in industry which involves the concepts of Heat Transfer mechanisms. PO 1 3 AAE515.14 CLO 14 Understand the physical phenomena associated with convection and use non-dimensional parameters to analyze convection heat transfer. PO 1, 3 3 AAE515.15 CLO 15 Calculate local and global convective heat fluxes using Newton's law of cooling PO 2, 2 2	AAE515.12	CLO 12			3
AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122			involving all the modes of heat transfer.	PO 12	
AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23 PO 2AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122	AAE515.13	CLO 13	Remember the concepts to work out real time	PO 1	3
AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122			problems in industry which involves the		
AAE515.14CLO 14Understand the physical phenomena associated with convection and use non- dimensional parameters to analyze convection heat transfer.PO 1, PO 23AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 122			concepts of Heat Transfer mechanisms.		
AAE515.15 CLO 15 Calculate local and global convective heat fluxes using Newton's law of cooling PO 2 PO 2	AAE515.14	CLO 14		PO 1,	3
AAE515.15 CLO 15 Calculate local and global convective heat fluxes using Newton's law of cooling PO 2, PO 12 2					
heat transfer.PO 2, PO 12AAE515.15CLO 15Calculate local and global convective heat fluxes using Newton's law of coolingPO 2, PO 12					
fluxes using Newton's law of cooling PO 12			heat transfer.		
	AAE515.15	CLO 15	Calculate local and global convective heat	PO 2,	2
			fluxes using Newton's law of cooling	PO 12	
2	AAE515.16	CLO 16	Understand empirical correlations to analyze	PO 2,	2
external and internal, forced and free PO 12					
convection problems.					

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)					Progra	am Ou	itcome	es (PO	s)				Prog Outo	gram Sp comes (1	pecific PSOs)
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2	3												1	1	
CLO 3	3												1		
CLO 4		2												1	
CLO 5	3														
CLO 6	3														
CLO 7		1												1	
CLO 8		2										2			
CLO 9		2											1	1	
CLO 10		2											1		
CLO 11	3													1	
CLO 12	3											3			
CLO 13	3														
CLO 14	3	3											1	1	
CLO 15		2										2			
CLO 16		2		A 11								2			

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO2, PO 12	SEE Exams	PO1,PO2, PO 12	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	INTRODUCTION TO HEAT TRANSFER, CONDUCTION
rate equation, heat transfer c Short and ins	echanisms of heat transfer, Basic laws of heat transfer. Conduction heat transfer: Fourier Steady and unsteady and periodic heat transfer -Initial and boundary conditions, Overall coefficient, Electrical analogy, Critical radius of insulation, Extended surfaces (Fins) Long, ulated tips. Application to error measurement of temperature. Significance of Biot and ers, Chart solutions of transient conduction systems –concept of Functional Body
UNIT-II	CONVECTION, FORCED CONVECTION
convection he and Energy I Cylinders. Co	Pi Theorem, application for developing semi-empirical non-dimensional correlation for at transfer-significance of non-dimensional numbers-Concepts of Continuity, Momentum Equations. Concepts of hydrodynamic and thermal boundary layer -Flat plates and ncepts about Hydrodynamic and Thermal Entry Lengths-division of internal flows based cempirical correlations for Horizontal Pipe Flow and annulus flow
UNIT-III	FREE CONVECTION, CONDENSATION
relations for V theory of cond empirical corr	of Hydrodynamic and thermal boundary layer along a vertical plate - Use of empirical Vertical plates and pipes. Film boiling. Film wise and drop wise condensation, Nusselt,,s lensation on a vertical plate. Film condensation on vertical and horizontal cylinders using elations. Application in Aero engines, Gas turbine combustion chamber – Working elation with convection and condensation
UNIT-IV	HEAT EXCHANGERS
	of heat exchangers, overall heat transfer Coefficient and fouling factor, Concepts of TU methods, Problems using LMTD and NTU Methods, Application in Aero engines.
UNIT-V	RADIATION HEAT TRANSFER
quantities, Lav two black boo shields, electri	aracteristics, Laws of black-body radiation, Irradiation, Total and Monochromatic ws of Planck, Wien, Kirchhoff, Lambert, Stefan and Boltzmann, Heat exchange between lies, concepts of shape factor, Emissivity, heat exchange between grey bodies, radiation ical analogy letworks. Application in Space Engineering
Text Books:	
Delhi, India. 4	Cengel, "Heat Transfer A Practical Approach", Tata McGraw hill Education (P)Ltd, New th Edition, 2012 Indeva, "Fundamentals of Engineering, Heat and Mass Transfer", New Age, New Delhi, ion, 2012
Reference Bo	oks:
1.Holman, "H 2. Ghoshdastie	eat Transfer", Tata McGraw Hill education (P) Ltd, New Delhi, India. 10 th Edition, 2012. dar, P. S, "Heat Transfer", Oxford University Press, New Delhi, India. 2 nd Edition, 2012

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Modes and mechanisms of heat transfer, Basic laws of heat transfer	CLO 1	T1:1-1
3	Applications of heat transfer	CLO 2	R2:5.2
4-6	Fourier Equation, General heat conduction equations in Cartesian Cylindrical and Spherical coordinates.	CLO 2	T1:2-2
7-8	Ultrasonic machining – elements of the process	CLO 4	R2:5.7
9-10	Simplification and forms of the field equation Steady state and Transient heat transfer, Initial and boundary conditions	CLO 4	T1:5.7
11	One dimensional steady state heat conduction heat transfer	CLO 7	T1:5.9

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference	
	Homogeneous slabs, hollow cylinders and spheres			
12-13	Overall heat transfer coefficient, Electrical analogy	CLO 9	T1:10.2	
14	One dimensional steady state heat conduction heat transfer: systems with variable thermal conductivity and Systems with internal heat generation.	CLO 9	R1:2.5	
15	Extended surfaces (Fins), Long, Short and insulated tips.	CLO 11	T1:2-2	
16	Tutorials	CLO 11	R2:5.8	
17-18	Problems	CLO 13	T2:3.5	
21-22	One Dimensional Transient Conduction heat Transfer Systems with negligible internal resistance, of different geometries.	CLO 11	T1:5.4- 5.8	
23-24	Significance of Biot and Fourier umbers,	CLO 9	T1:3.1	
25-26	Chart solutions of transient conduction systems.	CLO 10	T1 3.5	
27	Classification of systems based on causation flow ,condition of flow, configuration of flow and medium flow	CLO 10	T1:5.3	
28-29	Dimensional analysis as a tool for experimental investigation-Buckingham pi theorem Dimensional analysis- Application for developing non-dimensional correlation for convective heat transfer	CLO 11	T1:3.6	
30	Concepts of Continuity, Momentum and Energy Equations	CLO 11	T1 8.2	
31-32	Forced Convection External Flows Concepts of hydrodynamic and thermal boundary layer and use of empirical correlations for Flat plates and Cylinders	CLO 11	T1 8.2	
33	Problems	CLO 12	T1:7.1	
34	Development of Hydrodynamic and thermal boundary layer along a vertical	CLO 11	T1:7.1,7.2	
35	Use of empirical relations for Vertical plates and pipes	CLO 12	T1:9.1	
36	Regimes of Pool boiling and Flow boiling, Critical heat flux, Calculations on Nucleate Boiling	CLO 13	T1: 9.4	
37	critical heat flux and film boiling	CLO 14	T1:10.1- 10.2	
38	Condensation, Film wise and drop wise condensation,	CLO 13	T1:10.3	
07.00	Nusselt's theory of condensation on a vertical plate.	GL 0.12	R1:6.6	
37-38	concepts of shape factor	CLO 13	T1:10.4	
39-40	Film condensation on vertical and horizontal cylinders using empirical correlations	CLO 12	T1:10.5- 10.6	
41	Radiation Emission characteristics	CLO 12	T1:11.2,1 1.3	
42	Black-body radiation, Irradiation, Total and monochromatic quantities, Laws of Planck, Wien, Kirchhoff, Lambert, Stefan and Boltzmann.	CLO 13	T1: 11.4	
43	Heat exchange between grey bodies.	CLO 12	T1: 12.2	
44	concepts of shape factor,	CLO 11	T1:12.3	
45	Comparison of thermal and non -thermal processes	CLO 13	T1:12.5	
46	Radiation shields, electrical analogy for radiation networks.	CLO 14	T1: 13.1- 13.2	
47-48	Classification of heat exchangers	CLO 14	T:13.3	
49-50	Overall heat transfer Coefficient and fouling factor	CLO 15	T1:13.4,1 3.5	
51-53	Concepts of LMTD and NTU methods	CLO 16	T1:3.6,R 1:6.5	
54-56	Problems using LMTD and NTU methods	CLO 16	T1:8.2	

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To understand the industrial and	Guest	PO1	PSO2
	practical applications	Lecturer/Sem		
		inar		

Prepared by: Dr. P. Srinivas Rao, Professor & HOD

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	MECHANISM AND MACHINE DESIGN					
Course Code	AAE523					
Programme	B.Tech					
Semester	V					
Course Type	Elective					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Chief Coordinator	Dr. Y B Sudhir Sastry, Professor					
Course Faculty	Dr. Y B Sudhir Sastry, Professor					

I. COURSE OVERVIEW:

The primary objective of this course is to understand the different Aircraft structural component loads, and to equip the senior year aerospace engineering students with the relevant infrastructure to carry out the design of aircraft sub-structures like wings, fuselages, landing gears etc.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME001	Ι	Engineering Drawing	4
UG	AME002	II	Engineering Mechanics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIAExamination	Total Marks
Mechanism and Machine Design	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pa	attern for CIA
------------------------	----------------

Component	,	Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otai iviarks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Presentation on real-world problems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Seminar
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignment

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Assignments
PSO 2	Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	2	Assignments
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The cou	The course should enable the students to:					
Ι	Understand the basic principles of kinematics and the related terminology of machines					
II	Discriminate mobility; enumerate links and joints in the mechanisms.					
III	Formulate the concept of analysis of different mechanisms					
IV	Understand the working of various straight line mechanisms, gears, gear trains, steering gear mechanisms, cams and a Hooke's joint					
V	Analyze a mechanism for displacement, velocity and acceleration of links in a machine					

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
CAAE523.01	CLO 1	Understand the kinematic links, kinematic pairs and formation of the kinematic chain.	PO 1	3
CAAE523.02	CLO 2	Distinguish between mechanism and machine.	PO 1	3
CAAE523.03	CLO 3	Design and develop inversions of quadratic cycle chain, slider crank mechanism, double slider crank mechanism and cross slider mechanism.	PO 1	3
CAAE523.04	CLO 4	Demonstrate type synthesis, number synthesis and dimensional synthesis.	PO 2	2
CAAE523.05	CLO 5	Construct Graphical methods of velocity polygon and acceleration polygons for a given configuration diagram.	PO 1, PO 2	3
CAAE523.06	CLO 6	Understand other methods of acceleration diagrams like Klien's construction.	PO 1, PO 2	2
CAAE523.07	CLO 7	Develop secondary acceleration component i.eCorreli's component involving quick return mechanisms	PO 2	1
CAAE523.08	CLO 8	Alternative approach for determining velocity by using I centers and centroids methods.	PO 2	1
CAAE523.09	CLO 9	Significance of relative motion between two bodies, three centres in line theorem	PO 2	2
CAAE523.10	CLO 10		PO 2	2
CAAE523.11	CLO 11		PO 1	3
CAAE523.12	CLO 12	The effect of precession on the stability of vehicles, Applications of motorbikes, automobiles, airplanes and ships	PO 1, PO 3	3
CAAE523.13	CLO 13	Develop the Cam profiles and followers design	PO 1	3
CAAE523.14		Understand the uniform velocity, simple harmonic motion and uniform acceleration, maximum velocity and acceleration during outward and return strokes	PO 1, PO 2	3
CAAE523.15	CLO 15	Understand the Davis steering gear, Ackerman's steering gear, velocity ratio	PO 3	2
CAAE523.16	CLO 16	Understand the hook's joint, single and double hooks joint, universal coupling, applications.	PO 1, PO 2	2
CAAE523.17	CLO 17	Derive the expression for minimum number of teeth to avoid interference in case of pinion and gear as well as rack and pinion.	PO 2	3
CAAE523.18		Application of different gear trains including epi- cyclic and deduce the train value using tabular and relative velocity method.	PO 2	2
CAAE523.19	CLO 19	Significance of differential gear box in an automobile while taking turn on the road.	PO 3	3
CAAE523.20		Enable the students to understand the importance of Freudenstein equation, Precession point synthesis, Chebyshev's method, structural error $rac{1}{2}$ = Medium; 1 = Low	PO 3	3

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning				P	rogra	m Ou	itcom	es (P(Os)						Species (PSC	
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												2			
CLO 2	3												2			
CLO 3	3															
CLO 4		2														
CLO 5	3	3												2		
CLO 6	2	2														
CLO 7		1												2		
CLO 8		1														
CLO 9		2														
CLO 10		2														
CLO 11	3													2		
CLO 12	3		3													
CLO 13	3															
CLO 14	3	3														
CLO 15			2													
CLO 16	2	2														
CLO 17		3														
CLO 18		2														
CLO 19			3											2		
CLO 20	<u>а</u> т	Lab /	3	lediur	1	T -								2		

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO3	SEE Exams	PO 1, PO2, PO3	Assignments	PO 3	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	I	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

V	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I MECHANISMS & MACHINES
Elements of links, classification, rigid link, flexible and fluid link, types of kinematic pairs, sliding turning, rolling, screw and spherical pairs, lower and higher pairs, closed and open pairs, constraine motion, completely, partially or successfully constrained, and incompletely constrained, mechanism and machines, classification, kinematic chain, inversion of mechanism, inversion of quadratic cycle, chair single and double slider crank chains; Exact and approximate straight line mechanisms: Paucellier, hart chibichef, pantograph.
UNIT-II KINEMATIC ANALYSIS OF MECHANISMS
Velocity and acceleration, motion of link in machine, determination of velocity and acceleration diagrams, graphical method, application of relative velocity method for four bar chain, analysis of slide crank chain for displacement, velocity and acceleration of sliding, acceleration diagram for a give mechanism, Kleins construction, Coriolis acceleration, determination of Coriolis component of acceleration.
UNIT-III PLANE MOTION OF BODY & GYROSCOPIC MOTION PRECESSION
Instantaneous centre of rotation, centroids and axodes, relative motion between two bodies, three centre in line theorem, graphical determination of instantaneous centre, diagrams for simple mechanisms an determination of angular velocity of points and links. The gyroscope, free and restrained, working principle, the free gyro, rate gyro, integrating gyro as motion measuring instruments, effect of precession on the stability of vehicles, motorbikes, automobiles airplanes and ships, static and dynamic forces generated due to in precession in rotating mechanisms.
UNIT-IV CAMS AND FOLLOWERS, STEERING GEARS
Cams and followers, definition uses, types, terminology, types of follower motion, uniform velocity simple harmonic motion and uniform acceleration, maximum velocity and acceleration during outwar and return strokes, roller follower, circular cam with straight, concave and convex flanks, condition for correct steering, Davis steering gear, Ackerman's steering gear, velocity ratio, hook's joint, single an double hooks joint, universal coupling, applications.
UNIT-V GEARS AND GEAR TRAINS, DESIGN OF FOUR BAR MECHANISMS
Introduction to gears: Types, law of gearing; Tooth profiles: Specifications, classification, helical, beve and worm gears, simple and reverted gear train, epicyclic gear trains, velocity ratio or train value, four ba mechanism, Freudenstein equation, Precession point synthesis, Chebyshev's method, structural error.
TEXT BOOKS:
 Amithab Ghosh, Asok Kumar Malik, —Theory of Mechanisms and machines, East West Press Pvt Ltd, 2001. J. S. Rao, R.V. Dukkipati —Mechanism and Machine Theory / New Age Publicationsl, 1996.
REFERENCES:
 Jagadish Lal, "Theory of Mechanisms and Machines", Metropolitan Book Company, 1stEdition,1978. P. L. Ballaney, —Theory of Machines^I, Khanna Publishers, 3rd Edition, 2003.

XIV. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Elements of links, classification, rigid link, flexible and fluid link	CL01	T1:1.2, R1:5.2
2	Types of kinematic pairs, sliding, turning, rolling, screw and spherical pairs	CL01	T1:1.3

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
3	Lower and higher pairs, closed and open pairs	CL01	T1:1.4
4	Constrained motion, completely, Partially or successfully constrained	CLO2	T1:1.6, R1:5.6
5-6	Incompletely constrained, mechanism and machines, Classification, kinematic chain, inversion of mechanism	CLO2	T1:2.2
7-9	Inversion of quadratic cycle ,Single slider crank chains, Double slider crank chains	CLO3	T1:2.4, R1:6.2
10-12	Exact and approximate straight line mechanisms: Paucellier,	CLO4	T1:2.25, R2:4.2
13	Exact and approximate straight line mechanisms: pantograph.	CLO5	T1:2.6
14-15	Velocity and acceleration, motion of link in machine	CLO5	T1:2.8
16	Determination of velocity and acceleration diagrams	CLO6	T1:2.9, R1:6.8
17	Graphical method	CLO6	T1:2.11
18	Application of relative velocity method for four bar chain	CLO6	T1:3.2, R2:4.8
19	Analysis of slider crank chain for displacement,	CLO7	T1:3.4
20	Velocity and acceleration of sliding, acceleration diagram for a given mechanism	CLO7	T1:3.5, R1:5.7
21	Kleins construction	CLO6	T1:3.6
22	Coriolis acceleration	CLO7	T1:3.6
23	Determination of Coriolis component of acceleration.	CLO7	T1:3.8
24	Instantaneous centre of rotation, centroids and axodes, relative motion between two bodies,	CLO8	T1:3.9
25	Three centres in line theorem graphical determination of instantaneous centre,	CLO8	T1:3.9, R2:4.12
26	Diagrams for simple mechanisms and determination of angular velocity of points and links	CLO9	T1:3.12, R2:4.8
27	The gyroscope, free and restrained, working principle,	CLO10	T2:5.1
28	The free gyro, rate gyro, Integrating gyro as motion measuring instruments	CLO10	T2:5.3, R1:5.9
29	Effect of precession on the stability of vehicles,	CLO11	T2:5.4
30	Effect of precession on the stability of motorbikes, automobiles,	CLO12	T2:5.4, R2:4.9
31	Effect of precession on the stability of airplanes and ships,	CLO12	T2:5.7
32	Static and dynamic forces generated due to in precession in rotating mechanisms.	CLO12	T2:5.9, R2:7.2
33	Cams and followers	CLO 13	T1:8.1
34	Definition uses, types, terminology, types of follower motion	CLO 13	T1:8.3, R1:5.2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
35	Uniform velocity, simple harmonic motion	CLO 14	T1:8.4, R1:6.3
36	Uniform acceleration	CLO 14	T1:8.8
37	Maximum velocity and acceleration during outward and return strokes,	CLO 14	T1:8.9, R1:7.5
38	Roller follower, circular cam with straight, concave and convex flanks	CLO 14	T1:8.12
39	Condition for correct steering, Davis steering gear, Ackerman's steering gear	CLO 15	T1:7.3, R2:7.6
40	Velocity ratio, hook's joint, single and double hooks, joint Universal coupling, applications	CLO 16	T1:7.8
41	Introduction to gears: Types, law of gearing; Tooth profiles: Specifications, classification	CLO 17	T1:9.1, R1:7.6
42	Helical, bevel, Worm gears	CLO 17	T1:9.2, R2:7.8
43	Simple and reverted gear train	CLO 17	T1:9.3
44	Epicyclic gear trains	CLO 18	T1:9.5, R1:9.5
45	Velocity ratio or train value, four bar mechanism, Freudenstein equation	CLO 19	T1:9.6
46	Precession point synthesis	CLO 20	T1:9.7
47	Chebyshev's method, structural error.	CLO 20	T1:9.9, R2:9.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Broad knowledge of engineering materials and material properties	Seminars / Guest Lectures/ NPTEL	PO 1	PSO 1
2	Practical Exposure about the stress deflections and stability of elements	Seminars / Guest Lectures / NPTEL	PO 3	PSO 3

Prepared by: Dr. Y B Sudhir Sastry, Professor

HOD, AE

VI SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	SPACE	SPACE PROPULSION				
Course Code	AAE012	AAE012				
Programme	B.Tech	B.Tech				
Semester	VI A	VI AE				
Course Type	Core					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits
	3		1	4	-	-
Chief Coordinator	Mr. Shiva Prasad U, Assistant Professor					
Course Faculty			rasad U, Assistan vanthi, Assistant			

I. COURSE OVERVIEW:

This course flinches with a basic principles of rocket propulsion and presents an overview of the space missions followed by the system requirements. It includes an overview of different types of propulsion like solid, liquid and hybrid propulsion. Solid propulsion grain design and estimates for the mission will be evaluated by gaining the knowledge. In addition to solid, liquid and hybrid propulsion techniques will be detailed in the current course and this also tries to forecast the future development of propulsion technologies, identifying some futuristic propulsion systems, which will need to use new space propulsion technologies. It includes an overview of the relevant propulsion technologies (e.g., cold gas, chemical, electric), propulsion technology selection, system design, and component evaluation.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE007	V	Aircraft Propulsion	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Space propulsion	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
V	LCD / PPT	~	Seminars	~	Mini Project	×	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiarks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminars
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Mini Project

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Assignments
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	2	Seminars
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	1	Mini Project
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Appraise various space missions, parameters to be considered for designing trajectories and rocket
	mission profiles.
II	Classify the different chemical rocket propulsion systems, types of igniters and performance
	considerations of rockets.
III	Discuss the working principle of solid and liquid propellant rockets and gain basic knowledge of
	hybrid rocket propulsion.
IV	Illustrate electric propulsion techniques, ion and nuclear rocket and the performances of different
	advanced propulsion systems.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE012.01	CLO1	Demonstrate the basic principles of space propulsion and its applications in different	PO1	3
AAE0012.02	CLO2	types of orbits. Describe the concept of orbital elements and basic orbital equations.	PO1	3
AAE0012.03	CLO3	Adapt the concepts of vertical takeoff and landing for space applications and launch trajectories.	PO1	3
AAE0012.04	CLO4	Explain the concept of single staging to rockets and two staging to rockets	PO1	3
AAE0012.05	CLO5	Explain the operating principle of rocket engine and demonstrate the tsiolkovsky rocket equation.	PO2	2
AAE0012.06	CLO6	Discuss the different Newton's laws of motion and the relation of thrust generation to different laws of motion	PO1	3
AAE0012.07	CLO7	Describe the different types of propulsion systems and preliminary concepts in nozzle less propulsion and air augmented rockets.	PO2	2
AAE0012.08	CLO8	Demonstrate the salient features of solid propellants rockets and estimate the grain configuration designs suitable for different missions.	PO2	2
AAE0012.09	CLO9	Discuss the various feed systems and injectors for liquid propellants rockets and associated heat transfer problems.	PO3	2
AAE0012.10	CLO10	Understand the peculiar problems associated with operation of cryogenic engines in different missions.	PO3	2
AAE0012.11	CLO11	Identify the applications of standard and reverse hybrid systems with an overview of its limitations.	PO3	2
AAE0012.12	CLO12	Appreciate the different propellant feed system options for both chemical and electric propulsion systems, and their similarities/differences.	PO3	2
AAE0012.13	CLO13	Evaluate the factors that limit the performance of these different propellant feed systems.	PO2, PO3	2
AAE0012.14	CLO14	Classify different types of electric propulsion systems, and evaluate their advantages and disadvantages.	PO2,PO3	2
AAE0012.15	CLO15	Design an electric propulsion system for a particular scenario, and evaluate the design experimentally.	PO2,PO3	2
AAE012.16	CLO16	Emphasize the practical application of theoretical analysis and encourage a deeper appreciation of propulsion systems design.	PO3	2

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AAE012.17	CLO17	Appreciate the suitability of a given propulsion system for a particular space application.	PO3	2

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Os)				Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												3			
CLO 2	3												1			
CLO 3	1															
CLO 4	3													2		
CLO 5		2											1			
CLO 6	3												3			
CLO 7		2												3		
CLO 8		2												2		
CLO 9			1													
CLO 10			3											3		
CLO 11			2										1			
CLO 12			3													
CLO 13		2	3													
CLO 14		2	1											2		
CLO 15		2	3												1	
CLO 16			1												1	
CLO 17			3			1 – T (

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO1, PO2	SEE Exams	PO2, PO3	Assignments	PO1	Seminars	PO2
Laboratory Practices	PO1	Student Viva	-	Mini Project	PO3	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

٦

XIII. SYLLABUS

UNIT-I	PRINCIPLES OF ROCKET PROPULSION
elliptical tra	rockets, Newton's third law, orbits and space flight, types of orbits, basic orbital equations, nsfer orbits, launch trajectories, the velocity increment needed for launch, the thermal rocket epts of vertical takeoff and landing, SSTO and TSTO, launch assists.
UNIT-II	FUNDAMENTALS OF ROCKET PROPULSION
classification	rinciple, Rocket equation, Specific impulse of a rocket, internal ballistics, Rocket nozzle n, Rocket performance considerations of rockets, types of igniters, preliminary concepts in nozzle ion, air augmented rockets, pulse rocket motors, static testing of rockets and instrumentation, lerations.
UNIT-III	SOLID ROCKET PROPULSION
	res of solid propellant rockets, selection criteria of solid propellants, estimation of solid propellant me temperature, propellant grain design considerations.
	ning in solid propellant rockets, combustion instability, strand burner and T-burner, applications ges of solid propellant rockets.
UNIT-IV	LIQUID AND HYBRID ROCKET PROPULSION
for liquid pr problems, co cryogenic er	tres of liquid propellant rockets, selection of liquid propellants, various feed systems and injectors opellant rockets, thrust control cooling in liquid propellant rockets and the associated heat transfer ombustion instability in liquid propellant rockets, peculiar problems associated with operation of ngines, introduction to hybrid rocket propulsion, standard and reverse hybrid systems, combustion in hybrid propellant rockets, applications and limitations.
UNIT-V	ADVANCED PROPULSION TECHNIQUES
of performa	tet propulsion, types of electric propulsion techniques, Ion propulsion, Nuclear rocket, comparison nce of these propulsion systems with chemical rocket propulsion systems, future applications of pulsion systems, Solar sail.
Text Books	
Wesley,	
	M.J.L., Rocket and Spacecraft Propulsion, 2nd Edition, MIT Press, 1922. nd Pratt, Hypersonic Air breathing propulsion th Edition, 1993.
Reference H	
2. Mathur, Distribu	 G.P., "Rocket Propulsion Elements" John Wiley & Sons Inc., New York, 5th Edition, 1993. M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers and tors, Delhi, 1988. M., Advanced Space Propulsion Systems, Springer 2003.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference T2:1.1-1.1.4	
1-2	History of rockets, Newton's third law	CLO 1		
3-5	Orbits and space flight, Types of Orbits, Basic Orbital Equations	CLO 2	T2:1.3-1.4.3	
6-7	Elliptical transfer orbits, Launch trajectories, Velocity increment needed for launch, Thermal rocket engine,	CLO 2	T2:1.3-1.3.1 ,2.1	
8-9	Concepts of vertical takeoff and landing, SSTO and TSTO, launch assists.	CLO 3	T2:8.3	
10-11	Operating principle	CLO 5	T2:1.2-1.2.1	
12	Rocket equation, Specific impulse of a rocket,	CLO 5	T2:1.2- 1.2.1,2.5.1	
13	Internal ballistics, Rocket nozzle classification, Rocket performance considerations of rockets	CLO 7	R1 : 3.4	
14	Types of igniters	CLO 7	R1 : 8.1	
15	Preliminary concepts in nozzle less propulsion	CLO 7	T2: 6.6	
16-17	Air augmented rockets, pulse rocket motors,	CLO 7	T2: 6.6	
18-19	Static testing of rockets and instrumentation, safety considerations.	CLO 8	T2:7.22	
20-21	Salient features of solid propellant rockets,	CLO 8	T2:4.2	
22-23	Selection criteria of solid propellants,	CLO 8	R1:12.2	
24-27	Estimation of solid propellant adiabatic flame temperature, propellant grain design considerations.	CLO 8	R1:11.3	
28	Erosive burning in solid propellant rockets, combustion instability,	CLO 8	R1:11.3	
29-31	Strand burner and T-burner, applications and advantages of solid propellant rockets.	CLO 8	R1:11.1	
32-33	Salient features of liquid propellant rockets,	CLO 9	R1:6.1	
34-36	Selection of liquid propellants, various feed systems and injectors for liquid propellant rockets	CLO 9	R1:7.1	
37	Thrust control cooling in liquid propellant rockets and the associated heat transfer problems	CLO 9	R1:8.2	
38-40	Combustion instability in liquid propellant rockets, peculiar problems associated with operation of cryogenic engines,	CLO 10	R1:15.4	
41-42	Introduction to hybrid rocket propulsion,	CLO 11	R1:15.0	
43-46	Standard and reverse hybrid systems	CLO 11	R1:15.2	
47	Combustion mechanism in hybrid propellant rockets, applications and limitations.	CLO 15	R1:15.1	
48	Electric rocket propulsion,	CLO 12	T2:6.3	
49	Types of electric propulsion techniques	CLO 13	T2:6.4	
50-51	Ion propulsion, Nuclear rocket, comparison of performance of these propulsion systems with chemical rocket propulsion systems	CLO 14	T2:6.5	
52-53	Future applications of electric propulsion systems	CLO 16	T2:6.9	

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
54	Solar sail.	CLO 17	R3:5.1

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with	Relevance with
			POs	PSOs
1	Testing of rocket propulsion systems at various operating conditions	Mini Projects	PO3, PO 4	PSO 3
2	Advances in propulsion techniques for Nozzle less propulsion	Guest Lecture	PO 2	PSO 2

Prepared by:

Mr. Shiva Prasad U, Assistant Professor Mrs. Sravanthi G, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COMPUTA	COMPUTATIONAL AERODYNAMICS						
Course Code	AAE013							
Programme	B.Tech							
Semester	VI AE							
Course Type	Core							
Regulation	IARE - R16							
		Theory		Practic	al			
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits			
	3	1	4	3	2			
Chief Coordinator	Mr G Satya Dileep, Assistant Professor							
Course Faculty		Dileep, Assistant l na, Assistant Profe						

I. COURSE OVERVIEW:

The subject provides students with necessary skills and knowledge in basics and should be able to assess a problem for analysis using computational aerodynamics, formulate a problem, select a method and obtain a solution. Each unit provides systematic development of computational aerodynamics. The role of CA elaborates applications, including projects for students and professionals to use CFD in much more realistic situations.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE003	III	Fluid Mechanics and Hydraulics	4
UG	AAE004	IV	Low Speed Aerodynamics	4
UG	AAE008	V	High Speed Aerodynamics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Computational Aerodynamics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	~	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experime	ents					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otar wiarks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Presentation on real-world problems and videos
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Assignments
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Seminars
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Videos on real time problems
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	Videos on real time problems

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	1	Seminar
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	1	Videos on real time problems
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:										
Ι	Discuss the fundamental aspects of numerical discretization and the major theories, approaches									
	and methodologies used in computational aerodynamics.									

II	Analyze to build up the skills in the actual implementation of computational aerodynamics methods boundary conditions, turbulence modeling etc by using commercial CFD codes.
III	Demonstrate the applications of CFD for classic fluid dynamics problems and basic thoughts and
	philosophy associated with CFD.
IV	Understand the various grids used in practice, including some recommendations related to grid
	quality and choose appropriate data structure to solve problems in real world.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
AAE013.01	CLO 1	Understand the necessity of CFD tool as both	PO 1	3	
		research and design areas in modern computational world	PO 2		
AAE013.02	CLO 2	Explain the applications of computational fluid	PO 1	3	
		dynamics tool in various engineering branches other			
		than aerospace engineering.			
AAE013.03	CLO 3	Recognize the selection of type of flow from the	PO 2	3	
		finite control volume and infinitesimal small fluid			
		element depending upon the requirements.			
AAE013.04	CLO 4	Develop the governing equations required for	PO 2	3	
		computational aerodynamics in both conservation	PO 3		
		and non-conservation forms.			
AAE013.05	CLO 5	Explain the need of classification of quasi linear	PO 2	2	
		partial differential equations by Cramer's rule and			
		Eigen Value Method.			
AAE013.06	CLO 6	Understand the concepts of range of influence and	PO 1	2	
		domain of dependence for a flow field.			
AAE013.07	CLO 7	Explain the general behaviour of the partial	PO 2	2	
		differential equations which falls in hyperbolic,	PO 3		
		parabolic and elliptic equations.			
AAE013.08	CLO 8	Demonstrate the CFD aspects of the hyperbolic,	PO 3	2	
		parabolic and elliptic equations in aerodynamic			
		problems and physical problems.			
AAE013.09	CLO 9	Discuss the concepts of finite differences	PO 2	3	
		approximation for first order, second order and	PO 3		
		mixed order derivatives.			
AAE013.10	CLO 10	Distinguish between explicit and implicit	PO 2	3	
		approaches that are needed for solving different	PO 3		
		finite differential equations.			
AAE013.11	CLO 11	Explain the Consistency analysis and von Neumann	PO 2	3	
		stability analysis of finite difference methods and	PO 3		
		physical significance of CFL condition.			
AAE013.12	CLO 12	Discuss the different types of grids available for	PO 3	2	
		different flow fields available in computational fluid			
		dynamics.			
AAE013.13	CLO 13	Understand the need for generating grids for solving	PO 3	2	
		the finite differential equations in analyzing a flow			
		field.			
AAE013.14	CLO 14	Describe the various CFD techniques available for	PO 4	2	
		solving the finite differential equations for a flow			
	01.0.15	field.			
AAE013.15	CLO 15	Discuss the aspects of numerical dissipation and	PO 4	2	
		numerical dispersion and explain the applications of	PO 5		
	OT C 1 T	each in CFD techniques.	DC 2	-	
AAE013.16	CLO 16	Explain the technique of pressure correction method	PO 2	2	
		with the need of staggered grid and its philosophy.	PO 4		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE013.17	CLO 17	Explain the numerical procedures for analysis like SIMPLE, SIMPLER SIMPLEC and PISO	PO 4 PO 5	3
		algorithms and differentiate with regular CFD techniques.	105	
AAE013.18	CLO 18	Discuss the concepts of finite volume method and	PO 3	2
		explain the difference from finite difference method for solving different flow field.	PO 4	
AAE013.19	CLO 19	Demonstrate the need of finite volume discretization and its general formulation of a numerical scheme in finite volume method.	PO 3	3
AAE013.20	CLO 20	Understand the principle of two dimensional finite volume methods in solving flow fields with finite control volume.	PO 4	3

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning					_		utcon						Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3	3														
CLO 2	3															
CLO 3		3											1			
CLO 4		3	2													
CLO 5		2														
CLO 6	2															
CLO 7		3	2										1			
CLO 8			2										1			
CLO 9		3	3										2			
CLO 10		3	3										2			
CLO 11		3	3										2			
CLO 12			2										1			
CLO 13			2										1			
CLO 14				2										1		
CLO 15				3	1									2		
CLO 16		2		2										1		
CLO 17				3	2									2		

Course Learning		Program Outcomes (POs)												Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CLO 18			3	1										1				
CLO 19			3										2					
CLO 20			3											1				

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2, PO 3, PO 4, PO 5	SEE Exams	PO 1, PO 2, PO 3, PO 4, PO 5	Assignments	PO 1, PO 2	Seminars	PO 1, PO 3, PO 4
Laboratory Practices	PO 4, PO 5	Student Viva	-	Mini Project	PO4, PO 5	Certification	PO 5
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	INTRODUCTION TO COMPUTATIONAL AERODYNAMICS					
applications fluid element momentum a conservation	Need of computational fluid dynamics, philosophy of CFD, CFD as a research tool as a design tool, applications in various branches of engineering, models of fluid flow finite control volume, infinitesimal fluid element, substantial derivative physical meaning of divergence of velocity, derivation of continuity, momentum and energy equations, physical boundary conditions significance of conservation and non-conservation forms and their implication on CFD applications strong and weak conservation forms shock capturing and shock fitting approaches.					
UNIT-II	MATHEMATICAL BEHAVIOR OF PARTIAL DIFFERENTIAL EQUATIONS AND THEIR IMPACT ON COMPUTATIONAL AERODYNAMICS					
Classification of quasi-linear partial differential equations by Cramer's rule and Eigen value method, general behavior of different classes of partial differential equations and their importance in understanding physical and CFD aspects of aerodynamic problems at different Mach numbers involving hyperbolic, parabolic and elliptic equations: domain of dependence and range of influence for hyperbolic equations, well-posed problems.						
UNIT-III	BASIC ASPECTS OF DISCRETIZATION					
derivatives, accuracy, co	to finite difference: finite difference approximation for first order, second order and mixed explicit and implicit approaches, truncation and round-off errors, consistency, stability, nvergence, efficiency of numerical solutions. Von Neumann stability analysis, physical of CFL stability condition.					
structured gr grids, adapt	Need for grid generation, structured grids artesian grids, stretched (compressed) grids, body fitted structured grids, H-mesh, C-mesh, O-mesh, I-mesh, multi-block grids, C-H mesh, H-O-H mesh, overset grids, adaptive grids, unstructured grids: triangular, tetrahedral cells, hybrid grids, quadrilateral, hexahedral cells					

UNIT-IV CFD TECHNIQUES

Lax-Wendroff technique, MacCormack's technique, Crank Nicholson technique, Relaxation technique, aspects of numerical dissipation and dispersion. Alternating-Direction-Implicit (ADI) Technique, pressure correction technique: application to incompressible viscous flow, need for staggered grid. Philosophy of pressure correction method, pressure correction formula. Numerical procedures: SIMPLE, SIMPLER, SIMPLEC and PISO algorithms, boundary conditions for the pressure correction method.

UNIT-V FINITE VOLUME METHODS

Basis of finite volume method, conditions on the finite volume selections, cell-centered and cell vertex approaches. Definition of finite volume discretization, general formulation of a numerical scheme, two dimensional finite volume methods with example.

Text Books:

- 1. J. D. Anderson, Jr., "Computational Fluid Dynamics- The Basics with Applications", McGrawHill Inc, 2012.
- 2. D A Anderson, J C Tannehill, R H Pletcher, "Computational Fluid Mechanics and Heat Transfer", 1st edition, 1997.

Reference Books:

- 1. Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Vol. I, Butter worth-Heinemann, 2nd edition, 2007.
- 2. Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics for Engineers", Engineering Education Systems, 4th edition, 2000.
- 3. Patankar, S.V., "Numerical Heat Transfer and Fluid Flow", Hemisphere Pub. Corporation, 1st edition, 1980.
- 4. H K Varsteeg, W Malalasekera, "An Introduction to Computational Fluid Dynamics The Finite Volume MEthod", Longman Scientific and Technical, 1st edition, 1995.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Computational Fluid Dynamics introduction	CLO 1	T1 : 1.1
2-3	CFD is a Research tool, as a design tool and Applications in various branches of engineering	CLO 2	T1 : 1.2,1.3,1.4
4-5	Models of fluid flow, Finite Control Volume Infinitesimal Fluid Element Substantial derivative	CLO 3	T1 : 2.2, 2.3
6	Physical meaning of Divergence of velocity	CLO 3	T1 : 2.4
7-8	Continuity, Momentum Equations	CLO 4	T1 : 2.5, 2.6
9-10	Energy Equations	CLO 4	T1 : 2.7
11-12	Physical Boundary Conditions	CLO 4	T1 : 2.9
13-14	Significance of conservation and non-conservation forms and their implication on CFD applications	CLO 4	T1 : 2.10
15	Strong and weak conservation forms	CLO 4	T1: 2.10

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
16	Shock capturing and shock fitting approaches.	CLO 4	T1:2.10
17-18	Classification of quasi-linear partial differential equations by Cramer's rule and Eigen value method	CLO 5	T1:3.2,3.3
19	General behavior of different classes of partial differential equations	CLO 7	T1: 3.4
20	Partial different equations importance in understanding physical and CFD aspects of aerodynamic problems.	CLO 8	T1 : 3.4
21	Different Mach numbers involving hyperbolic, parabolic and elliptic equations	CLO 7	T1 : 3.4
22	Dependence and range of influence for hyperbolic equations, Well-posed problems	CLO 6	T1 : 3.4
23-24	Introduction to Finite Differences finite difference approximation for first order, second order and mixed derivatives	CLO 9	T1 : 4.1, 4.2, 4.3
25	Pros and cons of higher order difference schemes	CLO 9	T1 : 4.3
26-27	Difference equations- explicit and implicit approaches	CLO 10	T1:4.4
28	Truncation and round-off errors, consistency, stability, accuracy, convergence	CLO 11	T1 : 4.5
29-30	Von Neumann stability analysis Physical significance of CFL stability condition	CLO 11	T1 : 4.5
31	Need for grid generation Structured grids	CLO 12	R1 : 6.1
32-33	Cartesian grids stretched (compressed) grids body fitted structured grids	CLO 12	R1 : 6.1.1, 6.1.3
34-36	H-mesh, C-mesh, O-mesh, I-mesh & Multi-block grids, C-H mesh, H-O-H mesh, overset grids,	CLO 12	R1 : 6.1.3, 6.1.4
37-38	Adaptive grids, Unstructured grids Triangular/ tetrahedral cells, hybrid grids Quadrilateral/ hexahedra cells	CLO 13	R1 : 6.2
39-40	Lax-Wendroff technique, Mac Cormack's technique Crank Nicholson technique	CLO 14	T1 : 6.2, 6.3, 4.4
41-42	Relaxation technique, aspects of numerical dissipation and dispersion, Alternating Direction Implicit Technique	CLO 15	T1 : 6.5, 6.6, 6.7
43	Pressure correction technique- application to incompressible viscous flow	CLO 16	T1 : 6.8
44-45	Need for staggered grid. Philosophy of pressure correction method	CLO 16	T1 : 6.8.2, 6.8.3
46-47	Pressure correction formula and Numerical procedures	CLO 16	T1 : 6.8.4
48-50	SIMPLE, SIMPLER, SIMPLEC and PISO algorithms	CLO 17	R4 : 6.4, 6.6, 6.7, 6.8
51	Boundary conditions for the pressure correction method	CLO 16	T1 : 6.8.6
52	Basis of finite volume method conditions on the finite volume selections	CLO 18	R1 : 5.1
53	Cell-centered and cell-vertex approaches	CLO 18	R1 : 5.2
54-55	Definition of finite volume discretization General formulation of a numerical scheme	CLO 19	R1 : 5.2.2, 5.2.3
56-57	2-dimensional finite volume method with example	CLO 20	R1 : 5.3.1

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Transformation of space	Assignments /	PO 1, PO 2, PO 5	PSO 2
	coordinates into computational	Seminars/ NPTEL/		
	coordinates	Guest Lectures		
2	Numerical calculations for solving	Seminars /	PO 1, PO 2, PO 3,	PSO 2, PSO 3
	PDEs	Laboratory	PO 4	
		Practices / Video		
		Lectures		

Prepared by: Mr. G Satya Dileep, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AIRCRA	AIRCRAFT STABILITY AND CONTROL					
Course Code	AAE014	AAE014					
Programme	B.Tech						
Semester	VI A	E					
Course Type	Core						
Regulation	IARE - R	16					
	Theory				Practical		
Course Structure	Lecture	s	Tutorials	Credits	Laboratory	Credits	
	3		1	4	-	-	
Chief Coordinator	Dr. Yagya Dutta Dwivedi, Professor						
Course Faculty	Dr. Yagya Dutta Dwivedi, Professor Ms. G. Swathi, Assistant Professor						

I. COURSE OVERVIEW:

Aircraft Stability and Control is the science that investigates the stability and control of aircraft and all other flying vehicles. From the first flight by the Wright brothers, it was observed that flight without knowledge of stability and control was unfeasible. Since then, several different concepts for controlling aircraft flight have been devised including control surfaces, deformable surfaces, morphing of wings etc. This course introduces some of these concepts and describes their operation, as well as the degree of stability that they can provide. Both fixed wing and rotary wings are addressed in this course. Modern aircraft control is ensured through automatic control systems known as autopilot. Their role is to increase safety, facilitate the pilot's task and improve flight qualities. The course will introduce modern aircraft stability and control and discuss some of its objectives and applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE011	V	Aircraft Performance	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Aircraft Stability and Control	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Theory	Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiai ks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assessing real-world problems by case study
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar/ Research papers
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Assignments

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Lectures, Assignments, Seminars
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	2	Tutorials, Software Practice
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	1	Industry Exposure
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Demonstrate concept of stability and application to dynamic systems like Aircraft, and the role of primary controls and secondary controls in longitudinal stability.
II	Learn about the mathematical modeling of an aircraft in longitudinal, lateral and directional cases.
III	Estimate the longitudinal and directional parameters with the help of the linearized equations of aircraft motion.
IV	Analyze the different type of modes in longitudinal, lateral and directional motion of aircraft, and recovery from those modes.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE014.01	CLO 1	Apply concept of stability, controllability and maneuverability in an aircraft.	PO 1	3
AAE014.02	CLO 2	Use and interpret the basic mathematics, science and engineering for solving problems of longitudinal, lateral and directional static stability.	PO 1	3
AAE014.03	CLO 3	Describe stick fixed and stick free conditions for neutral point.	PO 2	2
AAE014.04	CLO 4	Demonstrate different methods for finding static margin, control force and CG limitation.	PO 2	2
AAE014.05	CLO 5	Organize total stability parameters in order of merit of flight conditions.	PO 4	1
AAE014.06	CLO 6	Locate the cause of instability in an aircraft and solve the issue.	PO 4	1
AAE014.07	CLO 7	Identify aircraft different types of stability for different categories of aircraft.	PO 1	3
AAE014.08	CLO 8	Demonstrate the aircraft component contribution for different stability.	PO 1	3
AAE014.09	CLO 9	Discuss and identify the stability problems of aircraft in different phases.	PO 2	2
AAE014.10	CLO 10	Relate different stability criteria and do the comparative study.	PO 1	3
AAE014.11	CLO 11	Interpret the concept behind equations of motions in different frame of references.	PO 2	3
AAE014.12	CLO 12	Appraise the factors that enhance the stability of aircraft during different flight regime.	PO 4	1
AAE014.13	CLO 13	Create new concept of the stability in new configuration and type of aircrafts.	PO 4	1
AAE014.14	CLO 14	Describe the effects of forces and moments in disturbed or perturbed conditions on the stability.	PO 1	3
AAE014.15	CLO 15	Discuss the concept of linearization of equation of motion and aerodynamic forces and moments.	PO 2	3

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												2			
CLO 2	3													3		
CLO 3		2											2			
CLO 4		2													1	
CLO 5				1										2		

Course Learning		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 6				1										2		
CLO 7	3															
CLO 8	3													1		
CLO 9		2												3		
CLO 10	3															
CLO 11		3											3			
CLO 12				1										1		
CLO 13				1									2			
CLO 14	3													2		
CLO 15		3												3		

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2	SEE Exams	PO 1, PO 2	Assignments	PO 4	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I INTRODUCTION AND LONGITUDINAL STABILITY-I

Aircraft axes system, definition: equilibrium, stability, controllability & maneuverability. Examples from simple mechanical systems for stability. Longitudinal static stability and dynamic stability for un accelerated flight. Criteria for longitudinal static stability and trim condition. Contribution of Principle components. Equations of equilibrium- stick fixed neutral point, elevator angle required to trim. Definition-static margin. Equations of motion in steady, symmetric pull-up maneuver, elevator effectiveness, elevator hinge moment, neutral point, maneuver point, static margin for stick fixed and stick free conditions, control force and control gradient. Trim tabs and types of trim tabs, aerodynamic and mass balancing of control surfaces, forward and aft most limits of CG.

UNIT-II LATERAL-DIRECTIONAL STATIC STABILITY

Introduction to lateral-direction stability- aerodynamic forces and moments, aircraft side force due to side slip, aircraft rolling moment due to side slip and aircraft yawing moment due to side slip. Aircraft component

contribution rudder requi	on directional static stability, Aircraft component contribution for lateral-directional stability, rements.
UNIT-III	AIRCRAFT EQUATION OF MOTION
relative mer stability axis	of motion of flight vehicle - systems of reference frames - Earth, body, wind, stability axes - its. Euler angles, angles of attack and sideslip– definitions- Earth to body axis transformation, to body axis transformation. Rotating axis system- expressions for linear and angular moment of time derivatives-inertia tensor, components of linear and angular velocities, accelerations.
longitudinal	of aerodynamic, gravity forces, moments applied on flight vehicle. Equations of motion- and lateral-directional. Relation between angular velocity components and Euler angle rates. on of velocities of airplane in Earth axis system.
UNIT-IV	LINEARIZATION OF EQUATIONS OF MOTION AND AERODYNAMIC FORCES AND MOMENTS DERIVATIVES
condition. E approximation Linearised 1 derivatives.	of state of motion of vehicle, forces and moments as perturbations over prescribed reference flight equation of motion in perturbation variables. Assumption of small perturbations, first order ons-linearization equations of motion. Linearised of force and moment equation, of motion ongitudinal and lateral-directional equations of perturbed motion. Significance of aerodynamic Derivatives of axial, normal force components and pitching moment with respect to the velocity, ck, angle of attack rate, pitch rate, elevator angle.
UNIT-V	AIRCRAFT DYNAMIC STABILITY
frequency and approximation solutions. D stability and	odes of motion characteristics, mode shapes and significance, time constant, undamped natural nd damping ratio- mode shapes- significance. One degree of freedom, two degree of freedom ons- constant speed (short period), constant angle of attack (long period) approximations- etermination of longitudinal and lateral stability from coefficients of characteristic equation- lateral stability from coefficients of characteristics equation- ter forces in steady spin, recovery, pilot techniques.
Text Books	
56347-57 2. Nelson, H 066110-3	R.C., "Flight Stability and Automatic Control", 2nd Edn., Tata McGraw Hill, 2007, ISBN 0-07-
Reference E	Gooks:
ISBN A	, L.V., "Introduction to Aircraft Flight Dynamics", AIAA Education Series, 1st Edition, 1998, -56347-226-0.G. nick, B.W., "Aerodynamics, Aeronautics, and Flight Mechanics", Wiley India, 2nd Edition, 1995, 7.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Describe the basic aerodynamics, atmosphere, characteristics of airfoils, forces and moments, aircraft axis system, equilibrium.	CLO 1	T2: 1.1-1.5, T1: 4.1
3-4	Recall the stability, controllability and maneuverability. Practical example of stability, longitudinal static stability and dynamic static stability.	CLO 1	T2: 2.1-2.2, R1: 3.1
5-6	Identify the accelerated flight, Criteria for longitudinal static stability and trim condition. Contribution of the components of static stability, Equations of equilibrium.	CLO 2	T2: 2.3-2.4

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
7-8	Recall the Stick fixed neutral point, Elevator angle required to trim, Static margin, Equation of motion in steady pull maneuver.	CLO 2	T2: 2.5-2.6, R1: 3.3
9-10	Recognize the elevator effectiveness and elevator hinge moment.	CLO 3	T2: 3.3
11	Explain about control force and control gradient, neutral point, maneuver point.	CLO 4	T2: 3.4, R1: 4.1
12	Explain about trim tabs and types of trim tabs, static margin for stick fixed and stick free conditions.	CLO 5	T2: 3.4
13-14	Apply aerodynamic and mass balancing of control surfaces, forward and aft most limits of CG.	CLO 5	T2: 3.3
15-16	Recognize. Introduction to lateral-direction stability- aerodynamic forces and moments.	CLO 6	T2: 4.2
17-18	Explain about the aircraft side force due to side slip, aircraft rolling moment due to side slip.	CLO 6	T2: 5.1
19-20	Define about the aircraft yawing moment due to side slip, aircraft component contribution, directional static stability.	CLO 7	T2: 5.2
21-22	Estimate the aircraft component contribution for lateral- directional stability, rudder requirements.	CLO 7	T2: 5.3
23-24	Recognize description of motion of Flight vehicle - systems of reference frames - Earth, body, wind.	CLO 8	T2: 4.5
25	Recall Stability axes - relative merits. Euler angles, angles of attack and sideslip.	CLO 8	T1: 4.1
26	Define- Earth to body axis transformation, stability axis to body axis transformation.	CLO 9	T1: 4.2
27-28	Recognize rotating axis system- expressions for linear and angular moment of rigid body, time derivatives-inertia tensor	CLO 9	T1: 4.3
29-30	Recall Components of linear and angular velocities, accelerations. Components of aerodynamic, gravity forces, moments applied on flight vehicle.	CLO 10	T2: 5.2
31-32	Interpret Equations of motion- longitudinal and lateral- directional. Relation between angular velocity components and Euler angle rates. Determination of velocities of airplane in earth axis system	CLO 10	T2: 5.2
33-34	Interpret description of state of motion of vehicle, forces and moments as perturbations over prescribed reference flight condition.	CLO 11	T2: 5.3
35-36	Explain Equation of motion in perturbation variables, Assumption of small perturbations, first order approximations-linearization equations of motion.	CLO 11	T1: 6.1-6.2
37-38	Identify linearized of force and moment equation of motion Linearised longitudinal and lateral-directional equations of perturbed motion. Significance of aerodynamic derivatives	CLO 12	T1: 6.3, R2:6.1
39-40	Inferre derivatives of axial, normal force components and pitching moment with respect to the velocity, angle of attack, angle of attack rate, pitch rate, elevator angle.	CLO 12	T1: 6.4
41-42	Identify Principle modes of motion characteristics, mode shapes and significance, time constants.	CLO 13	T1: 6.5
43-44	Interpret undamped natural frequency and damping ratio, mode shapes, significance.	CLO 13	T1: 7.1
45-46	Recall One degree of freedom, two degree of freedom approximations- constant speed (short period).	CLO 14	T1: 7.2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
47	State and apply Constant angle of attack (long period) approximations- solutions.	CLO 14	T1: 7.3
48-49	Calculate longitudinal and lateral stability from coefficients of characteristic equation.	CLO 14	T1: 7.4, R2: 4.1-4.4
50-51	Explain Stability and lateral stability from coefficients of characteristics equation- stability criteria.	CLO 15	T1: 7.5, R2: 7.3
52-53	Apply the concept of aircraft spin- entry, balance of forces in steady spin.	CLO 15	T1: 7.6
54-55	Apply the concept of recovery methods, pilot techniques for recovery.	CLO 15	T1: 7.7

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with	Relevance with
			POs	PSOs
1	Application of knowledge and skills	Seminars / Expert	PO 2, PO 4	PSO 2
	in the estimation of aircraft stability	Lectures / Flight		
	and control system	testing		
2	Experimental knowledge of aircraft	Experimental work	PO 2, PO 4	PSO 3
	Stability measurement and data	need to be done		
	handling			

Prepared by:

Dr. Yagya Dutta Dwivedi, Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AIR TRANSPORTATION SYSTEM						
Course Code	AAE 52	AAE 526					
Programme	B. Tech						
Semester	VI	AEF	RO				
Course Type	Core						
Regulation	IARE -	R16					
	Theory				Practical		
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator M		Mr. Anudeep, Assistant Professor					
Course Faculty Mr. Anudeep, Assistant Professor							

I. COURSE OVERVIEW:

A system of air transportation in which local airports offer air transportation to a central airport where long distance flights are available called air transportation system. This course provides an overview of the air transportation system that illustrates the interdependence among its components i.e. airlines, airports, civil aviation authorities and air navigation services. This will include understanding the role, function and operation of aircraft, in addition to airports, airspace and commercial airlines

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE001	III	Introduction to Aerospace Engineering	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Air Transportation System	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component			Total Marka
Type of Assessment			Total Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Presentation on real-world problems
PO2	Problem analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminars
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Assignments
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	seminars

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	1	Lectures, Assignments, Seminars
PSO 2	Problem solving skills: imparted through simulation language skills and general-purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	-	-
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	-	-

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:						
Ι	Apply knowledge and skills in the aviation industry and make more effective decisions for organisation.						
II	Provide insight into current trends and issues in civil aviation, such as aviation safety and security, law and new technology.						
III	Understand complexity of air transport operation and to find best solution for the issues.						
IV	Understand many transport issues involved in handling passengers, freight of aircraft.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Cada	CLO's	At the end of the course, the student will have the	PO's Mannad	Strength of
Code AAE526.01	CLO 1	ability to: Communicate at technical level with aviation service	Mapped PO 2	Mapping 2
AAL520.01		providers and aerospace professionals and	102	2
		organizations about aircraft and their systems.		
AAE526.02	CLO 2	Describe the effects the atmosphere has on aircraft	PO 2	3
AAE520.02	-			3
		operations and the implications for the air transport industry.		
AAE526.03	CLO 3	Analyze the aerodynamic and associated	PO 2	3
		performance characteristics for aircraft and infer the	PO 3	
		corresponding economic implications.		
AAE526.04	CLO 4	Assess the impact of contemporary challenges and	PO 2	2
		practical aspects in air transportation.		
AAE526.05	CLO 5	Evaluate pros and cons of emerging technological	PO 1	2
		aspect and responses.		
AAE526.06	CLO 6	Develop an applied knowledge to the global	PO 1	2
		aviation industry and key issues.		
AAE526.07	CLO 7	Understand international law and policies related to	PO 1	1
		air transportation activities.		
AAE526.08	CLO 8	Assess the impact of airline activities and operations	PO 1	1
		on economics and finances.		
AAE526.09	CLO 9	Evaluate the various factors influencing aviation	PO 2	2
		industry and effects of these factors on air		
		transportation		
AAE526.10	CLO 10	Developing capability to asses' functions of airports,	PO 2	2
		the basic principles of aviation policy.	PO 3	
AAE526.11	CLO 11	Execution of aviation policies related to airline	PO 1	3
		economics and flight planning.		
AAE526.12	CLO 12	Implementing standard procedure for air cargo	PO 1	3
		handling and its management.		
AAE526.13	CLO 13	Exposit legal, social, economic, ethical and	PO 7	2
		environment interest while undertaking air		
		transportation system.		
AAE526.14	CLO 14	Acquire the competencies to handle airspace,	PO 1	2
		aircrafts and air traffic control system.	PO 2	
AAE526.15	CLO 15	Develop knowledge to coordinate with different	PO 1	2
		organization in the air transportation system.		

^{3 =} High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning			-		-	m Ou							0	Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO 4
CLO 1		2														
CLO 2		2														
CLO 3		3	1										1			
CLO 4		3														
CLO 5	2															
CLO 6	2															
CLO 7	2															
CLO 8	2															
CLO 9		3														
CLO 10		2	1										1			
CLO 11	2															
CLO 12	2															
CLO 13							2									
CLO 14	3	2														
CLO 15	2											_	_			

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO 3, PO 7	SEE Exams	PO 1, PO 2, PO 3, PO 7	Assignments	PO 3	Seminars	PO 2, PO7
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

>	Early Semester Feedback	\checkmark	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII.SYLLABUS

UNIT-I	AVIATION INDUSTRY									
transportation characteristics	Introduction, history of aviation, evolution, development, growth, challenges; Aerospace industry, air transportation industry- economic impact, types and causes; Airline industry, structure and economic characteristics; Airlines as oligopolists, other unique economic characteristics; Significance of airline passenger load factors.									
UNIT-II	OPERATIONAL ENVIRONMENT									
The earth as a habitat, The Earth: physical issues affecting demand- surface, core, continents; Shape of demand; Demand forecasting- based on historical data, comparative analysis, theoretical demand models; Reliability of forecasts; The breadth of regulation- ICAO, IATA, national authorities (DGCA, FAA); Service properties: service volumes, international air service agreements, deregulation, privatization; Evolution: Communication, navigation and surveillance systems (CNSS); Radio communications: VHF, HF, ACARS, SSR, ADS; Navigation: NDB, VOR, DME, area-navigation systems(R-Nav), ILS, MLS, GPS, INS, laser-INS; Surveillance: SSR, ADS; Airborne elements: AFCS, PMS, electronic control and monitoring/engine instrumentation and central automated systems, EFIS, FMS, GPWS, TCAS- future trends.										
UNIT-III	AIRCRAFT									
indirect operation to	cash-flow, aircraft price; Compatibility with the operational infrastructure; Direct and ting costs; Balancing efficiency and effectiveness-payload-range, fuel efficiency. Technical o performance, operating speed and altitude, aircraft field length performance; Typical s; Effectiveness- wake-vortices, cabin dimensions, flight deck.									
UNIT-IV	AIRPORTS AND AIRLINES									
aerodrome ard runway capaci fleet planning, buy or lease; service quality	airport: airport demand, airport sitting, runway characteristics, length, declared distances, eas, obstacle safeguarding; Runway capacity, evaluating runway capacity, sustainable ty; Setting up an airline, modern airline objectives; Route selection and development, airline annual utilization and aircraft size, seating arrangements; Indirect operating costs; Aircraft- Revenue generation, computerized reservation systems, yield management; Integrating into the revenue-generation process; Marketing the seats; Airline scheduling; Evaluating cial viability, regulatory compliance, efficient use of resources, effective service									
UNIT-V	AIRSPACE									
Categories of airspace, separation minima, airspace sectors, capacity, demand and delay; Evolution of air traffic control system, procedural ATC system, procedural ATC with radar assistance, first generation 'automated system, current generation radar and computer-based ATC systems; Aerodrome air traffic control equipment and operation - ICAO future air-navigation systems (FANS); Air-navigation service providers as businesses										
Text Books:										
1.Hirst, M., The Air Transport System, Woodhead Publishing Ltd, Cambridge, England, 2008.										
Reference Books:										
 Wensven, J.G., Air Transportation: A Management Perspective, Ashgate,2nd Edition 2007. Belobaba, P. Odoni, A. and Barnhart, C., Global Airline Industry, 2nd Edition Wiley, 2009. 										

3. M. Bazargan, M., Airline Operations and Scheduling, Ashgate, 1st Edition 2004.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Introduction, history of aviation.	CLO 1	R1:1.1
3-4	Evolution, development, growth, challenges.	CLO 2	R1:1.1
5-7	Aerospace industry, air transportation industry.	CLO 1	R1:1.2,1.3
8-9	Economic impact, types and causes; Airline industry.	CLO 3	R2:1.1
10	Structure and economic characteristics; Airlines as oligopolists.	CLO 3	R1:6.2
11-14	Other unique economic characteristics; Significance of airline passenger load factors.	CLO 3	R1:6.3,6.4
15-17	The earth as a habitat, The Earth: physical issues affecting demand	CLO 8	T1:2.2,2.3
18-19	Surface, core, continents; Shape of demand; Demand forecasting- based on historical data, comparative analysis.	CLO 9	T1:2.4,2.5
20-21	Theoretical demand models; Reliability of forecasts; The breadth of regulation- ICAO, IATA, national authorities (DGCA, FAA).	CLO 7	T1:2.5.3,2. 6,3.2
22-23	Service properties: service volumes, international air service agreements, deregulation, privatization; trends	CLO 13	T1:3.4,3.4.2 3.4.3,3.4.4
24	Evolution: Communication, navigation and surveillance systems (CNSS)	CLO 14	T1:4.2,4.3, 4.3.2,4.3.3
25	Radio communications: VHF, HF, ACARS, SSR, ADS; Navigation: NDB, VOR, DME,	CLO 14	T1:4.3.1,4. 3.2
26-28	Area-navigation systems (R-Nav), ILS, MLS, GPS, INS, laser- INS; Surveillance: SSR, ADS; Airborne elements: AFCS, PMS, electronic control and monitoring/engine instrumentation and central automated systems, EFIS, FMS, GPWS, TCAS- future trends.	CLO 14	T1:4.3.2,4. 4.1
29	Costs- project cash-flow, aircraft price.	CLO 3	T1:5.2
30-31	Compatibility with the operational infrastructure; Direct and indirect operating costs	CLO 2	T1:5.3,5.4
32	Balancing efficiency and effectiveness-payload-range, fuel efficiency.	CLO 5	T1:5.5
33-34	Technical contribution to performance, operating speed and altitude, aircraft field length performance.	CLO 1	T1:5.5.3
35	Typical operating costs; Effectiveness- wake vortices, cabin dimensions, flight deck.	CLO 3	T1:5.5.4,5. 6,5.6.2
36-37	Setting up an airport: airport demand, airport sitting, runway characteristics, length, declared distances	CLO 6	T1:7.2,7.3, 7.4,7.5
38-40	Aerodrome areas, obstacle safeguarding; Runway capacity, evaluating runway capacity, sustainable runway capacity.	CLO 15	T1:7.5.3,7. 6,7.6.2 R1:11.6
41	Setting up an airline, modern airline objectives; Route selection and development.	CLO 15	T1:6.2,6.3, 6.4 R2:6.2
42	Airline fleet planning, annual utilization and aircraft size, seating arrangements; Indirect operating costs.	CLO 12	T1:6.5,6.6, 6.7,6.8
43	Aircraft- buy or lease; Revenue generation, computerized reservation systems, yield management; Integrating service quality into the revenue-generation process; Marketing the seats.	CLO 8	T1:6.11,6. 12,6.13,6.1 4
44	Airline scheduling; Evaluating success, financial viability, regulatory compliance.	CLO 6	T1:6.15,6. 16,6.16.2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
45	Efficient use of resources, effective service.	CLO 4	T1:6.16.4

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Application of knowledge and	Seminars /	PO 2, PO 4	PSO 1
	skills in the estimation of Air	Expert		
	Transportation System.	Lectures /		
		Flight testing		
2	On job training on air traffic	Practical	PO 2, PO 4	PSO 1
	control, airspace, aircraft	exposure is		
	operation is needed	needed.		

Prepared by: Mr. P Anudeep, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	AEROS	AEROSPACE PROPULSION AND COMBUSTION								
Course Code	AAE551	AAE551								
Programme	B. Tech	3. Tech								
Semester	VI AE	VI AE ME								
Course Type	Open Ele	Open Elective - I								
Regulation	IARE - H	R16								
		Theory		Prac	tical					
Course Structure	Lecture s	Tutorials	Credits	Laboratory	Credits					
	3	-	3	-	-					
Chief Coordinator	Mr. M V	Mr. M Vijay Kumar, Assistant Professor								
Course Faculty	Mr. M V	ijay Kumar ,	Assistant Pro	ofessor						

I. COURSE OVERVIEW:

The aim of Aerospace propulsion and combustion is to introduce students to the analyze parametric cyclic analysis, performance parameters, efficiency, and specific impulse of air breathing and non air breathing engines and know the design and performance of subsonic and supersonic inlets, types of combustion chambers and factors affecting the combustors. To be able to describe the principal figures of merit for aircraft engine and rocket motor performance and explain how they are related to vehicle performance. To be able to describe the principal design parameters and constraints that set the performance of gas turbine engines and to apply ideal-cycle analysis to a gas turbine engine to relate thrust and fuel burn to component-level performance parameters and flight conditions. It is the branch of rocket science for analyzing the performance of an engine.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME003	IV	Thermodynamics	4
UG	AME007	V	Aircraft propulsion	3

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Aerospace propulsion and combustion	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs			
~	LCD / PPT	2	Seminars	×	Mini Project	~	Videos			
×	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	I otar wiarks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	3	Presentation on
	science, engineering fundamentals, and an engineering		real-world
	specialization to the solution of complex engineering problems.		problems
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching	2	Seminar
	substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences		
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Term Paper

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Presentation on
	aeronautical/aerospace engineering in innovative, dynamic and		current
	challenging environment for design and development of new		challenges
	products		
PSO 2	Problem solving skills: imparted through simulation language	-	-
	skills and general purpose CAE packages to solve practical,		
	design and analysis problems of components to complete the		
	challenge of airworthiness for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing different	-	-
	types of in house and training and industry practice to fabricate		
	and test and develop the products with more innovative		
	technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and develop		
	systems and subsystems of aerospace and allied systems and		
	become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	surse should enable the students to:
Ι	Analyze parametric cyclic analysis, performance parameters, efficiency, and specific impulse
	of all air breathing engines.
Π	Know the design and performance of subsonic and supersonic inlets, types of combustion
	chambers and factors affecting the combustors
III	Discuss the types of nozzles, flow conditions in nozzles, interaction of nozzle flow with adjacent
	surfaces and thrust reversal
IV	Explain different types of compressors and turbines, work done, efficiency calculations.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE551.01	CLO 1	Apply knowledge and understand the essential facts, concepts and principles of thermodynamics.	PO 1	3
AAE551.02	CLO 2	Understand the basic function of all aircraft engine components and how they work.	PO 1	3
AAE551.03	CLO 3	Analyze the engine performance parameters and parameters influencing them.	PO 2	2
AAE551.04	CLO 4	Understand the impact of performance parameters on endurance and range how they affect the aircraft performance.	PO 1	2
AAE551.05	CLO 5	Demonstrate different types of aircraft engine operating principle.	PO 1	1
AAE551.06	CLO 6	Understand step by step procedure of engine parametric cycle analysis.	PO 2	2
AAE551.07	CLO 7	Understand steps involved in performance analysis of all aircraft engine.	PO 2	2
AAE551.08	CLO 8	Describe operational modes of subsonic inlets and parameters influencing it.	PO 1	2
AAE551.09	CLO 9	Analyze diffuser performance, losses in it and their impact on engine performance.	PO 2	2
AAE551.10	CLO 10	Describe supersonic inlets, starting problem in it and their operating modes.	PO 1	1
AAE551. 11	CLO 11	Understand different types of combustion chamber and functions of all the components.	PO 1	2
AAE551. 12	CLO 12	Analyze combustion chamber performance and parameters influencing them.	PO 3	1
AAE551. 13	CLO 13	Describe principle of operation of axial and centrifugal compressor.	PO 1	2
AAE551. 14	CLO 14	Understand the different nozzle operating conditions for C-D nozzle	PO 1	2
AAE551. 15	CLO 15	Describe principle of operation of axial and centrifugal compressor.	PO 1	1
AAE551. 16	CLO 16	Understand different design of compressor and limitations of each method.	PO 3	2
AAE551. 17	CLO 17	Analyze performance characteristics of axial and centrifugal compressor.	PO 2	2

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

Course Learning								POs)	Pr Ot	ogram itcome	s (PSC)s)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3															
CLO 2	3												2			
CLO 3		2														
CLO 4	2															
CLO 5	1												2			
CLO 6		2														
CLO 7		2														
CLO 8	2															
CLO 9		2											2			
CLO 10	1															
CLO 11	2															
CLO 12			1													
CLO 13	2															
CLO 14	2												1			
CLO 15	1															
CLO 16			2													
CLO 17		2														

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2 PO 3	SEE Exams	PO 1, PO 2 PO 3	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feed Back
×	Assessment of Mini Projects by Expert	S	

XIII. SYLLABUS

UNIT-I	ELEMENTS OF AIRCRAFT PROPULSION	Classes: 10					
Classification of power plants, methods of aircraft propulsion, propulsive efficiency, specific fuel consumption, thrust and power, factors affecting thrust and power, illustration of working of gas turbine engine, characteristics of turboprop, turbofan and turbojet engines and performance.							
UNIT-II	COMPONENTS OF JET ENGINES	Classes: 08					
Ram jet, scram jet engines construction and nomenclature, theory and performance, methods of thrust augmentation, atmospheric properties, introduction to compressors, turbines, combustors and after burners for aircraft engines.							
UNIT-III	INLETS, NOZZLES AND PROPERLLER THEROY	Classes: 10					
Propeller performance parameters, negative thrust, prop fans, ducted propellers, propeller noise, propeller selection, propeller charts. Subsonic and supersonic inlets, relation between minimum area ratio and external deceleration ratio. Starting problem in supersonic inlets, modes of inlet operation, jet nozzle, efficiencies, over expanded, under and optimum expansion in nozzles, thrust reversal.							
UNIT-IV	THERMODYNAMICS OF REACTING SYSTEMS	Classes: 09					
	n of combustion chambers, combustion chamber performance, flam effect of operating variables on performance.	e tube cooling, flame					
UNIT-V	PREMIXED FLAMES	Classes: 08					
flammability combustion,	goniot relations, theories of laminar premixed flame propagat limits; Diffusion flames: Burke-Schumann theory, laminar jet dif turbulent combustion, closure problem, premixed and non introduction to DNS and LES.	fusion flame, droplet					
Text Books:							
	. Turns, "An Introduction to Combustion", McGraw-Hill, 3 rd Edition . Ward, "Aerospace Propulsion Systems", John Wiley and Sons, 1 st						
Reference Bo	oks:						
1. M. H. Sadd, "Elasticity: Theory, Applications, and Numerics", Academic Press, 2 nd Edition, 2009.							
2. R. G. Bu Edition,	dynas "Advanced Strength and Applied Stress Analysis", McC 1999.	Graw-Hill, 2 nd					
3. A.P. Bore 2003.	si, R.J. Schmidt, "Advanced Mechanics of Materials", John Willey &	& Sons, 5 th Edition,					

XIV. COURSE PLAN:

The course	nlan is moont as a	quidaling Drobab	ly there may be changes.
The course	plan is meant as a	guidenne. Fiodad	Ty there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction to aerospace engineering	CLO 1	T2:5.5 R1:1.12.1
2	Define function of gas generator, Classify gas turbine engines	CLO 1	T2:5.6 R1:1.12.3
3	Operational envelops	CLO 1	T2:5.10 R1:1.15
4	Turbojet performance	CLO 1	T2:5.15 R1:1.16
5	Turbo fan performance	CLO 1	T2:5.17 R1:1.13.1
6	Turbo prop performance characteristics	CLO 1	T2:5.18 R1:1.13.2
7	Define engine thrust, takeoff thrust	CLO 2	T2:5.19 R1:1.13.3
8	Thrust equation, installed thrust	CLO 2	T2:5.20 R1:1.17.1
9	Methods of aircraft propulsion	CLO 2	T2:5.24 R1:1.17.3
10	Propulsive efficiency, efficiency of a turbo prop	CLO 3	T2:6.1 R1:2.3
11	Efficiency of a turbo fan and turbo jet	CLO 3	T2:6.3 R1:2.6.1
12	Explanation of performance parameters	CLO 4	T2:6.5 R1:2.6.2
13	Specific fuel consumption, specific impulse	CLO 4	T2:7.3 R1:2.8
14	Components of jet engines	CLO 5	T2:15.13 R1:8.7.2
15	Working principle of ramjet and Scram jet operating principle	CLO 5	T2:15.13 R1:8.7.2
16	Methods of thrust augmentation in aircrafts engines	CLO 5	T2:15.16 R1:8.7.3
17	Atmospheric properties influence on when aircrafts are flying	CLO 6	T1:11.9 R2:12.24
18	Use of after burner in an engine	CLO 6	T1:11.9 R3:12.25
19	Explanation of principle of operation of turbine	CLO 6	T1:3.2 R3:3.2
20	Operation of axial flow turbines	CLO 6	T1:3.3.1 R3:3.2
21	Design of a turbine blade and nomenclature	CLO 7	T2:16.5 R1:8.10
22	Explain principle of operation of compressor	CLO 7	T2:16.9 R1:8.11.1
23	Operation of centrifugal compressor and axial flow compressor	CLO 7	T2:16.9 R1:8.11.2
24	Stage efficiency calculations, cascade testing	CLO 7	T2:16.8 R1:8.12.1
25	Design of velocity triangles of a turbine blade	CLO 5	T2:16.8 R1:8.12.2
26	Define degree of reaction of a compressor	CLO 8	T2:16.11 R1:8.14
27	Internal flow and stall in subsonic inlets	CLO 8	T2:16.11 R1:8.20

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
28	Relation between minimum area ratio and	CLO 8	T2:16.12
	eternal deceleration ratio		R1:8.19
29	Working phenomenon of subsonic and supersonic	CLO 8	T2:16.12
	inlets	<u> </u>	R1:8.77
30	Diffuser performance	CLO 9	T2:1.2
31	Starting moblem of subsenie inlate	CLO 9	R1:7.2 T2:1.16
51	Starting problem of subsonic inlets	CLO 9	R1:7.7
32	Shock swallowing by area variation	CLO 9	T2:1.20
0-		020 /	R1:7.8
33	Starting problem of supersonic inlets	CLO 9	T2:1.20 R1:7.8
34	Definition of propeller and working principle	CLO 10	T2:2.1 R1:7.9.2
35	Performance of propeller in an engine	CLO 10	T2:16.11
55	remonitance of propener in an engine	CLO 10	R1:8.14
36	Types of propellers – ducted, prop fans etc	CLO 10	T2:16.8
20	Types of propeners - ducted, prop fails etc		R1:8.12.1
37	Calculated efficiency of a sub sonic and	CLO 10	T2:5.17
	supersonic inlets of an engine		R1:1.13.1
38	Definition of nozzle and its importance	CLO 11	T2:5.18
	-		R1:1.13.2
39	Over expanded, under and optimum expansion in	CLO 11	T2:5.19
10	nozzles	GL 0. 10	R1:1.13.3
40	Concept of thrust reversal in a nozzle	CLO 12	T2:5.20
41	Classification of combustion chambers	CLO 12	R1:1.17.1 T2:5.24
41	Classification of compusition chambers	CLO 12	R1:1.17.3
42	Combustion chamber performance	CLO 12	T2:6.1
.2		010 12	R1:2.3
43	Effect of operating variables on performance	CLO 12	T2:6.3
			R1:2.6.1
44	Flame stabilization	CLO 13	T2:6.5 R1:2.6.2
45	Effect of operating variables on performance and	CLO 13	T2:5.24
	cooling		R1:1.17.3
46	Combustion chamber types – annular and circular	CLO 13	T2:6.1
			R1:2.3
47	Combustion types, combustion inlet temperature	CLO 14	T2:6.3
40	and pressure variations		R1:2.6.1
48	Definition of pre mixed flames	CLO 14	T2:15.13
49	Rankine hugoniot relations for pre mixed flows	CLO 14	R1:8.7.2 T2:15.13
ч <i>у</i>	Rankine hugomot relations for pre infxed nows	CLO 14	R1:8.7.2
50	Theories of laminar premixed flame propagation	CLO 15	T2:15.16
	ttb ttb		R1:8.7.3
51	Quenching and flammability limits	CLO 15	T2:15.16
			R1:8.7.3
52	Diffusion flames: Burke-Schumann theory	CLO 15	T1:11.9 R3:12.25
53	Laminar jet diffusion flame, droplet combustion	CLO 16	T1:3.2
55	Lamma jet amasion name, a opiet combustion		R3:3.2
54	Turbulent combustion, closure problem	CLO 16	T1:3.3.1
		22010	R3:3.2
55	Premixed for turbulent combustion	CLO 16	T2:16.5
			R1:8.10

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
56	Non-premixed turbulent combustion	CLO 16	T2:16.9 R1:8.11.1
57	Introduction to DNS	CLO 16	T2:16.9 R1:8.11.2
58	Introduction to LES	CLO 17	T2:15.13 R1:8.7.2
59	Discussion of laminar jet diffusion flame	CLO 17	T2:15.13 R1:8.7.2
60	Application of numerical techniques in visualizing mixed flows	CLO 17	T2:15.16 R1:8.7.3

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 2	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	Guest lectures	PO 2	PSO 1

Prepared By: Mr. Vijay Kumar M, Assistant Professor

HOD, AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	INTRO	INTRODUCTION TO AUTOMOBILE ENGINEERING					
Course Code	AME552	AME552					
Programme	B.Tech	B.Tech					
Semester	VI A	VI AE					
Course Type	Elective						
Regulation	IARE - F	16					
	Theory				Practic	Practical	
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Mr. M Prashanth Reddy, Assistant Professor						
Course Faculty	Mr. M Prashanth Reddy, Assistant Professor						

I. COURSE OVERVIEW:

This course is intended to introduce structural and operational details of automobile and its systems. Major systems are fuel supply, cooling, ignition, electrical, transmission, suspension, braking and steering. Transport of personnel and goods play an important role in the economy of country and standard of living. Lakhs of vehicles running crores of kilometers. So the man power is required to manufacture and maintain all these vehicles. After completion of this course the students gains adequate knowledge either to work in manufacturing or maintenance sector of automobiles.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE002	III	Theory of Structures	4
UG	AME003	IV	Thermodynamics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Introduction to Automobile Engineering	70 Marks	30 Marks	100

Chalk & Talk Quiz Assignments MOOCs LCD / PPT Seminars Mini Project Videos Open Ended Experiments

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four).

Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments& Projects
PO 3	Design/ development of solutions : Competence to design a system, component or process to meet societal needs within realistic constraints.	1	Assignments
PO 5	Modern tool usage: An ability to formulate solve complex engineering problem using modern engineering and information Technology tools.	1	Assignments& Projects
PO 6	The engineer and society: To utilize the engineering practices, techniques, skills to meet needs of the health, safety, legal, cultural and societal issues.	2	Assignments& Seminars
PO 8	Ethics: An understanding and implementation of professional and ethical responsibilities.	1	Seminars

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	3	Projects& Seminars
PSO 2	Problem solving skills: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	1	Projects
PSO 3	Successful career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	3	Projects

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course s	The course should enable the students to:					
Ι	Understand the concept on working principles of various systems of auto mobiles and fuel supply systems.					
Π	Understand the working principles and operational details of cooling, ignition and electrical systems					
III	Analyze the working principles and operations details of transmission and suspension systems.					
IV	Evaluate the operational details and design principles of breaking and steering systems					
V	Compare the effects of emissions from automobiles. And to know the ways and means of reducing emissions.					

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME552.01	CLO 1	Understand the basic working of Auto mobile and different automobile components	PO 1 PO 3	2 2
AME552.02	CLO 2	Analyse the working of the basic components in the IC engines	PO 1 PO 3	3 3

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AME552.03	CLO 3	Understand the importance of lubrication system in automobile	PO 1	1
		Compare different fuel injection system and	PO 1	1
AME552.04	CLO 4	advantages of each individual and Concept	PO 3	2
		electronic controlled fuel injection	PO 5	3
AME552.05	CLO 5	Compare the different cooling processes in I.C engines, working of radiator and cooling accessories	PO 1	2
AME552.06	CLO 6	Analyse the different spark ignition system	PO 1	2
AME552.07	CLO 7	Understand the working of different automobile components like lighting system, horn, wiper, fuel gauge, temperature indicator	PO 1 PO 8	3 1
AME552.09	CLO 8	Understand the different working principles of	PO 3	1
AME552.08	CLU 8	clutches, and fly wheel	PO 5	3
		Analyse the transmission systems like gear	PO 1	3
AME552.09	CLO 9	boxes, propeller shafts, universal joints, differential gear boxes	PO 3	3
AME552.10	CLO 10	Explain the shock absorbers, suspension system	PO 1	2
AML552.10	CLO 10		PO 6	3
AME552.11	CLO 11	Compare the types of braking system, working	PO 1	3
71012552.11	CLO II	principles	PO 3	2
AME552.12	CLO 12	Explain the steering system and components of steering system	PO 1	3
AME552.13	CLO 13	Explain the steering mechanisms	PO 1	3
AME552.14	CLO 14	Understand the importance of pollution controls,	PO 6	3
AMEJJZ.14	CLU 14	pollution control techniques	PO 8	3
AME552.15	CLO 15	Understand the importance of alternative fuels	PO 6	3
11111232.13		Charistana the importance of anemative fuels	PO 8	3
AME552.16	CLO 16	Analyse the different alternative energy sources	PO 6	3
		2 - Modium: 1 - Low	PO 8	2

3 = **High**; **2** = **Medium**; **1** = **Low**

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2		2										1	1	3
CLO 2	3		3										3	1	
CLO 3	1												1		
CLO 4	1		2		3								2		
CLO 5	2												1	3	
CLO 6	2													1	
CLO 7	3							1					3		
CLO 8			1		3								1		
CLO 9	3		3										2	1	

Course Learning]	Progra	m Ou	tcome	s (POs	5)						ram Specific omes (PSOs)	
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CLO 10	2					3								2		
CLO 11	3		2										3			
CLO 12	3												3			
CLO 13	3												3			
CLO 14						3		3						2		
CLO 15						3		3						3		
CLO 16						3		2						3		

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1 PO 3 PO 5 PO 6	SEE Exams	PO 1 PO 3 PO 5 PO 6	Assignments	PO 1 PO 3 PO 5 PO 6	Seminars	PO 6 PO 8
Laboratory Practices	-	Student Viva	PO 1	Mini Project	PO 1 PO 5	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
~	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	INTRODUCTION					
Introduction to automobile engineering, chassis and automobile components, automobile engines, Otto cycle, diesel cycle, dual cycle, engine lubrication, lubricating oil, lubrication oil filter, engine servicing; Fuel supply system; Fuel tank, strainer, feed pump, fuel filter, injection pump, injector, filters, electronic controlled fuel injection, common rail direct injection systems						
Unit-II	Jnit-II COOLING SYSTEM					
pump, thermo of an ignition system, electr circuit, genera	rements, air cooling, liquid cooling, water forced circulation system, radiators, cooling fan, water ostat, pressure sealed cooling, antifreeze solutions, intelligent cooling; Ignition system: Function system, battery ignition system, storage battery, condenser and spark plug, magneto coil ignition onic ignition system, electronic ignition, spark advance mechanisms; Electrical system: Charging ator, current-voltage regulator, starting system, bendix drive mechanism solenoid switch, lighting pmatic high beam control, horn, wiper, fuel gauge, oil pressure gauge, engine temperature					

Transmission system: Clutches, principle, types, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, fluid fly wheel.

Gear boxes, types, constant mesh, synchro mesh gear boxes, epicyclic gear box, auto transmission, continuous variable transmission, propeller shaft, Hotch-Kiss drive, Torque tube drive, universal joint, differential, rear axles types, wheels and tyres; Suspension system: Objects of suspension systems, rigid axle suspension system, torsion bar, shock absorber, independent suspension system.

Unit-IV BRAKING AND STEERING SYSTEMS

Braking system: Mechanical brake system, Hydraulic brakes system, Master cylinder, wheel cylinder, Requirements of brake fluid, pneumatic and vacuum brake, ABS; Steering system: Steering geometry, camber, castor, king pin, rake, combined angle toe-in, toe-out, types of steering mechanism, Ackerman steering mechanism, Davis steering mechanism, steering gears types, steering linkages.

Unit-V EMISSIONS FROM AUTOMOBILES

Emissions from automobiles, pollution standards national and international, pollution control techniques, petrol injection, common rail diesel injection, variable valve timing; Energy alternatives, solar, photovoltaic, hydrogen, biomass, alcohols, LPG, CNG, liquid fuels and gaseous fuels, hydrogen as a fuel for internal combustion engines, their merits and demerits.

Text Books:

- 1. Willam H crouse, Donald L. Anglin, -Automobile Engineeringl, McGraw Hill, 10th Edition, 2006.
- 2. Manzoor, Nawazish Mehdi, Yosuf Ali, —A Text Book Automobile Engineeringl, Frontline Publications, 1 st Edition, 2011.

Reference Books:

- 1. Joseph Heinter, -Automotive Mechanicsl, CBS, 2nd Edition, 2006.
- 2. K. Netwon, W. Steeds, T. K.Garrett, —Automotive Engineeringl, Butterworth-Heinamann, 13th Edition, 2016.
- 3. S. Srinivasan, —Automotive Enginesl, Tata McGraw-Hill, 2nd Edition, 2003.
- 4. Khalil. U. Siddiqui, —A Text Book of Automobile Engineering, New Age International, 1st Edition, 2012.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Introduction: Resistance to vehicle motion	CLO 1	T1.4
	Layout of automobile Chassis and body components		
3	Types of automobile engines	CLO 2	T1.1
4	Engine lubrication, Engine Servicing	CLO 3	T2.1
5	Fuel System in S.I Engines mechanical and electrical, Fuel filters	CLO 4	T2.4
6	Carburetor, Air filters	CLO 2	T2.8
7	Petrol injection, MPFI and GDI Systems	CLO 2	T2.8
8	C.I Engines: Diesel injection systems	CLO 2	T2.9
9	Types of injection systems, DI systems IDI systems, Fuel pump, Nozzle, spray formation	CLO 4	T2.9
10-11	Injection timing, testing of fuel pumps, CRDI and TDI systems	CLO 4	T2.9
12-13	Cooling system: Cooling requirements, Air cooling, Liquid cooling, Thermo, Water and Forced circulation system	CLO 5	T2.5
14	Radiators, cooling fan, water pump	CLO 5	T2.5
15	Thermostat, evaporative cooling-pressure sealed cooling-antifreeze solutions	CLO 5	T2.5

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
15	Ignition System: Function of an ignition system, battery ignition system	CLO 6	T2.12
17	Storage batteries, auto transformer, contact breaker points.	CLO 6	T2.14
18	Condenser and spark plug-Magneto coil ignition system.	CLO 6	T2.12
19	Electronic ignition system using contact breaker	CLO 6	T2.13
20	Electronic ignition using contact triggers	CLO 6	T2.13
21	Spark advance and retard mechanism.	CLO 6	T2.13
22	Electrical System: Charging circuit, Generator	CLO 7	T2.15
23	Current voltage regulator	CLO 7	T2.15
24	Starting system, bendix drive mechanism	CLO 7	T2.16
25	Solenoid switch, lighting systems, Horn, wiper, fuel gauge	CLO 7	T2.16
26	Oil pressure guage, engine temperature indicator	CLO 7	T2.6
27	Transmission system:Clutches, principle, types, cone clutch	CLO 8	T1.3
28	Single plate clutch, Multi plate clutch, Magnetic and centrifugal clutches	CLO 8	T1.3
29	Fluid fly wheel-gear boxes, types	CLO 8	T1.3
30	Sliding mesh, constant mesh, synchromesh gear boxes	CLO 9	T1.4
31-32	Epicyclic gear box, over drive torque converter	CLO 9	T1.5
33	Propeller shaft-Hotch kiss drive, Torque tube drive	CLO 9	T1.6
34-35	Universal joint, differential, rear axles	CLO 9	T1.6
36	Wheels and tyres	CLO 10	T1.9
37-38	Suspension System: Objects of suspension systems-rigid axle suspension system and torsion bar	CLO 10	T1.7
39-40	Shock absorber, independent suspension system	CLO 10	T1.7
41	Braking system: Mechanical brake system	CLO 11	T1.10
42-43	Hydraulic brake system, Master cylinder, Wheel cylinder	CLO 11	T1.10
44	Requirement of brake fluid, Pneumatic brakes	CLO 11	T1.10
45	Vacuum brakes	CLO 11	T1.11
46	Steering system: Steering geometry	CLO 12	T1.8
47-48	Camber, castor, king pin rake, Combined angle toein, Center point steering	CLO 12	T1.8
49-50	Ackerman steering mechanism, Davis steering mechanism, steering gears and steering linkages.	CLO 13	T1.8
51-52	Emission from automobiles: pollution standards National and international-pollution control techniques	CLO 14	T2.17
53	Multipoint fuel injection for SI Engines, Common rail diesel injection	CLO 14	T2.17
54-55	Energy alternatives-Solar, Photo-voltaic, hydrogen	CLO 16	T2.7
56-57	Biomass, alcohols, LPG, CNG	CLO 15	T2.17
58-60	Standard vehicle maintenance practice	CLO 15	T2.4

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyse the	Seminars /	PO 1	PSO 1
	concepts	Guest Lectures		
		/ NPTEL		
2	Concepts related to thermodynamic	Seminars /	PO 1, PO 3	PSO 1
	laws, working principles of IC Engines	/NPTEL		
3	Encourage students to solve real time	Guest Lectures	PO 8	PSO 1
	problems like pollution controls			

Prepared by: Mr. M Prashanth Reddy, Assistant Professor

HOD, MECHANICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	INTRODUCTION TO ROBOTICS								
Course Code	AME553								
Programme	B.Tech								
Semester	VI A	VI AE							
Course Type	OPEN ELECTIVE								
Regulation	IARE - R16								
		Theory		Practic	cal				
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits				
	3	-	3	-	-				
Chief Coordinator	Mr. B.VijayaKrishna, Assistant Professor								
Course Faculty	Mr. B. Vij	ayaKrishna, Assist	ant Professor						

I. COURSE OVERVIEW:

In this course, students take on the roles of mechanical engineers, computer scientists and electrical engineers. Students research dynamics, kinematics and sensors. Subjects such as motion planning and obstacle avoidance, velocity and acceleration, serial chain mechanisms, pneumatic actuators, and drive circuits are covered. Students put knowledge into practice through projects where robots are created with teams. This is likely to be the first course in a robotics program. The subject makes understand the underline concepts used in design and building robot and make it working. The course covers kinematics and dynamics of motion robot arms. It covers feedback control systems, sensors; programming to make robotic work finally it undertakes to explain work in principles involved in industrial applications of robot.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS003	II	Computational Mathematics and Integral Calculus	4
UG	AME002	II	Engineering Mechanics	4
UG	AAE005	IV	Aircraft Materials and Production	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Introduction to Robotics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	~	Assignments	×	MOOCs		
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos		
×	✗ Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks			
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks		
CIA Marks	25	05	30		

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Capability to apply the knowledge of Mathematics, science and Engineering in the field of Mechanical Engineering.	3	Assignments
PO2	An Ability to analyze complex engineering problems to arrive at relevant conclusions using knowledge of Mathematics, Science and Engineering.	1	Assignments
PO3	Competence to design a system, component or process to meet societal needs within realistic constraints.	1	5 Min videos
PO4	To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	3	Seminars

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills : Professional skills Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for	3	Assignments
PSO 2	Problem Solving Skills : Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	2	Seminars
PSO 3	Practical Implementation and Testing Skills : Practical implementation and testing skills Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	3	Term Papers
PSO 4	Successful career and entrepreneurship : To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	1	Seminars

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The obj	The objective of the course is to enable the student in:								
I.	Familiarize with the automation and brief history of robot and applications.								
II.	Understand the kinematics of robots and knowledge about robot end effectors and their								
	design.								
III.	Apply robot actuators and feedback components to automation								

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
CAME553.01	CLO 1	Describe various stages of Robot, development	P01,P02	3
CAME553.02	CLO 2	List various types of Robots used in industry	P01,P03	3
CAME553.03	CLO 3	Illustrate structure of Robotics	P01, P011	2
CAME553.04	CLO 4	Explain automation and Robotics as apply to industry	P01 ,P02 P03	2
CAME553.05	CLO 5	Explain degrees of freedom	P01,P011	3
CAME553.06	CLO 6	Categorize various types of end effectors	P01,P02	2
CAME553.07	CLO 7	Explain for function of gripper & classify various types of gripper	P01 ,P03	3
CAME553.08		Explain considerations in selection & design of gripper.	P01, P011	1
CAME553.09		Categorize various types of sensors	P01,P02,P03	1
CAME553.10		Explain Rotation matrices about X Y & Z axis.	P02	1
CAME553.11	CLO 11	Describe Euler angles & equivalent angles about axis.	P01	2
CAME553.12	CLO 12	Describe Homogeneous transformation matrix	P01,P02	2
CAME553.13	CLO 13	Explain D.H Rotation	P01,P03	1
CAME553.4	CLO 14	Describe kinematics of Robotics in forward and reverse using matrix.	P01, P011	3
CAME553.15	CLO 15	Explain Differential kinematics.	P01,P02,P03	2
CAME553.16	CLO 16	Explain jacobian matrix	P03	1
CAME553.17	CLO 17	Describe Dynamic equation of robot or motion for different configurations	P02,PO4	1
CAME553.18	CLO 18	Explain various terms used in Newton-Euler formulation	P01 ,P02	2
CAME553.19	CLO 19	Describe various types of motion of end effector in space	P01 ,P03	3
CAME553.20	CLO 20	Explain polynomial equation of fit for robot motion	P01, P011	2
CAME553.21		Describe various types of actuators	P01,P02	2
CAME553.22	CLO 22	Explain role of robots in manufacture	P01,P03,PO4	3
CAME553.23		Describe various configuration of robots for manufacturing assembling inspection purpose	P01, P011	1
CAME553.24	CLO 24	Explain robot cell design	P01,P02,P03	2
CAME553.25		Describe work volume and robots screen concepts	P01 ,P03	3

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3	3											3		3	
CLO 2	3		3										3		3	
CLO 3	2										2		3		3	
CLO 4	2	2	2										3		3	

Course Learning					-	am O							C	Outcom	n Speci es (PSC)s)
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 5	3										3		3	2	2	
CLO 6	2	2												2		1
CLO 7	3		3										2			
CLO 8	1										1				3	
CLO 9	1	1	1										2			
CLO 10		1											2			
CLO 11	2												1		2	
CLO 12	2	2												2		1
CLO 13	1		1										2			
CLO 14	3										3			2		
CLO 15	2	2	2										1		3	
CLO 16			1										3			
CLO 17		1		1										2		
CLO 18	2	2											2			
CLO 19	3		3											3	1	
CLO 20	2										2					
CLO 21	2	2												2		
CLO 22	3		3	3									3		1	
CLO 23	1										1					1
CLO 24	2	2	2											3	1	
CLO 25	3		3										2			
	3 – I	ligh	2 -	Mod	ium	1 = I	OW									

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1,PO 2 PO 3,PO 4	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES – INDIRECT

► Early Semester Feedback

End Semester OBE Feedback

X Assessment of Mini Projects by Experts

XIII. SYLLABUS

Unit-I	INTRODUCTION TO ROBOTICS							
control syste	Introduction: Automation and robotic, an over view of robotics, classification by coordinate system and control systems; Components of the industrial robotics: Degrees of freedom, end effectors: Mechanical gripper, magnetic, vacuum cup and other types of grippers, general consideration on gripper selection and design.							
Unit-II	MOTION ANALYSIS AND KINEMATICS							
axis, homog	ysis: Basic rotation matrices, composite rotation matrices, Euler angles, equivalent angle and geneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates pordinates, forward and inverse kinematics, problems							
Unit-III	KINEMATICS AND DYNAMIC							
problems.	kinematics: Differential kinematics of planar and spherical manipulators, Jacobians, amics: Lagrange, Euler formulations, Newton-Euler formulations, problems on planar two lators.							
Unit-IV	TRAJECTORY PLANNING AND ACTUATORS							
Slew motion	lanning: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types of motion: n, joint interpolated motion, straight line motion, problems; Robot actuators and feedback ; Actuators: pneumatic and hydraulic actuators.							
Unit-V	ELECTRIC ACTUATORS AND ROBOTIC APPLICATIONS							
potentiomet	tuators: DC servo motors, stepper motors, feedback components: position sensors, ers, resolvers and encoders, velocity sensors, tactile sensors; Robot application in ng: Material handling, assembly and inspection.							
Text Books	:							
	M. P, —Industrial Robotics , Tata McGraw-Hill, 1st Edition, 2013. g, Introduction to Robotic Mechanics and Control , Pearson, 3rd Edition, 2013.							
Reference H	Books:							
	D. Klafter, —Robotic Engineering , Prentice Hall, 1st Edition, 2013. —Robotics , McGraw-Hill, 1st Edition, 2013.							

V

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	History of development of robots in chronological order	CLO1	T2:1.1
2-3	Robotic classification by co-ordinate and control system	CLO2	T2:1.5
4	Components of robotics	CLO3	T2:1.6
5	Automation and robotics. Need for this technologies in manufacture.	CL01	R1:1.7
6	Description of various robots with degrees of freedom	CLO4	T2:1.7
7	Description of various types of endeffector	CLO6	T1:1.9

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
8-10	Illustration of gripper mechanism course analysis	CLO7	T2:1.12
11-13	Requirement of gripper selection features	CLO8	T2:3.1
14-15	Description and function of various types of sensors.	CLO9	R2:1.13
16-18	Derivation of transformation matrix about X Y and Z axis. Composite rotation matrix.	CLO10	T2:1.15
19-21	Derivation of matrix using Euler angles,	CLO11	T2:3.1
22-23	Problem related to transformation in various axis.	CLO12	T1:3.1
24-25	Description of D-H Variables, Describe procedure for forward kinematic motion analysis.	CL013	T2:3.1
26-28	Problem related to D-H and matrix. Derivational of transformation matrix for small; incremental motion	CL014	T2:2.9
29-30	Problems on differential motion derivation of jacobian matrix for various configuration	CLO15	T2:2.12
31-34	Derivation of lagrange-Euler equation Solution of problems different configuration of robots	CL016	R2:2.15
35-38	Joint space motion for both straight line and point to point motions slew motion interpolated motion.	CLO18	T2:2.15
39-41	Explanation of polynomial equation for various types of motion and solution of problems in various types of trajectories. Description of functional aspects of each actuator and application	CLO20	T2:2.11
42-44	Function wise description of various configuration of robots for different application.	CLO23	T2:2.1
45	Applications of robots in manufacturing	CLO25	T1:2.3

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To introduce coding and analyze the concepts.	Guest lectures	PO 1, PO 4	PSO 1
2	To introduction of artificial intelligence	Seminars / NPTEL	PO 4, PO3	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by:

Mr. B.VijayaKrishna, Assistant Professor

HOD, MECHANICAL ENGINEERING